Advertisement

Few-Body Systems

, 60:61 | Cite as

Momentum-Space Probability Density of \({}^6\)He in Halo Effective Field Theory

  • Matthias Göbel
  • Hans-Werner Hammer
  • Chen Ji
  • Daniel R. PhillipsEmail author
Article
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue

Abstract

We compute the momentum-space probability density of \({}^6\)He at leading order in Halo EFT. In this framework, the \({}^6\)He nucleus is treated as a three-body problem with a \({}^4\)He core (\(c\)) and two valence neutrons (\(n\)). This requires the \(nn\) and \(n c\) t-matrices as well as a \(cnn\) force as input in the Faddeev equations. Since the \(n c\) t-matrix corresponds to an energy-dependent potential, we consider the consequent modifications to the standard normalization and orthogonality conditions. We find that these are small for momenta within the domain of validity of Halo EFT. In this regime, the \({}^6\)He probability density is regulator independent, provided the cutoff is significantly above the EFT breakdown scale.

Notes

Acknowledgements

DRP and CJ thank Charlotte Elster for useful discussions during the early stages of this work. DRP thanks Jerry Yang for drawing his attention to Ref. [29]. MG thanks Wael Elkamhawy and Fabian Hildenbrand for useful discussions during the early stages of this work. The work of DRP was supported by the US Department of Energy under Contract DE-FG02-93ER-40756 and by the ExtreMe Matter Institute EMMI at the GSI Helmholtzzentrum für Schwerionenphysik, Darmstadt, Germany. HWH and MG were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project Number 279384907 – SFB 1245. HWH was also supported by the Bundesministerium für Bildung und Forschung (BMBF) through Contract 05P18RDFN1.

References

  1. 1.
    S. Ulrych, H. Müther, Nucl. Phys. A 641, 499 (1998).  https://doi.org/10.1016/S0375-9474(98)00537-5 CrossRefADSGoogle Scholar
  2. 2.
    I. Yaron, J. Alster, L. Frankfurt, E. Piasetzky, M. Sargsian, M. Strikman, Phys. Rev. C 66, 024601 (2002).  https://doi.org/10.1103/PhysRevC.66.024601 CrossRefADSGoogle Scholar
  3. 3.
    O. Benhar, D. Day, I. Sick, Rev. Mod. Phys. 80, 189 (2008).  https://doi.org/10.1103/RevModPhys.80.189 CrossRefADSGoogle Scholar
  4. 4.
  5. 5.
    S. Kamefuchi, L. O’Raifeartaigh, A. Salam, Nucl. Phys. 28, 529 (1961).  https://doi.org/10.1016/0029-5582(61)91075-6 CrossRefGoogle Scholar
  6. 6.
    J.S.R. Chisholm, Nucl. Phys. 26(3), 469 (1961).  https://doi.org/10.1016/0029-5582(61)90106-7 CrossRefGoogle Scholar
  7. 7.
    R.J. Furnstahl, H.W. Hammer, Phys. Lett. B 531, 203 (2002).  https://doi.org/10.1016/S0370-2693(01)01504-0 CrossRefADSGoogle Scholar
  8. 8.
    S.N. More, S.K. Bogner, R.J. Furnstahl, Phys. Rev. C 96(5), 054004 (2017).  https://doi.org/10.1103/PhysRevC.96.054004 CrossRefADSGoogle Scholar
  9. 9.
    A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004).  https://doi.org/10.1103/RevModPhys.76.215 CrossRefADSGoogle Scholar
  10. 10.
    E. Braaten, H.W. Hammer, Phys. Rep. 428, 259 (2006).  https://doi.org/10.1016/j.physrep.2006.03.001 MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    C. Bertulani, H.W. Hammer, U. van Kolck, Nucl. Phys. A 712(1), 37 (2002).  https://doi.org/10.1016/S0375-9474(02)01270-8 CrossRefADSGoogle Scholar
  12. 12.
    P. Bedaque, H.W. Hammer, U. van Kolck, Phys. Lett. B 569(3), 159 (2003).  https://doi.org/10.1016/j.physletb.2003.07.049 CrossRefADSGoogle Scholar
  13. 13.
    H.W. Hammer, C. Ji, D.R. Phillips, J. Phys. G44(10), 103002 (2017)CrossRefADSGoogle Scholar
  14. 14.
    J. Rotureau, U. van Kolck, Few-Body Syst. 54, 725 (2013).  https://doi.org/10.1007/s00601-012-0455-6 CrossRefADSGoogle Scholar
  15. 15.
    C. Ji, C. Elster, D.R. Phillips, Phys. Rev. C 90, 044004 (2014).  https://doi.org/10.1103/PhysRevC.90.044004 CrossRefADSGoogle Scholar
  16. 16.
    D.V. Fedorov, A.S. Jensen, J. Phys. A 34(30), 6003 (2001).  https://doi.org/10.1088/0305-4470/34/30/311 MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 697, 783 (2002).  https://doi.org/10.1016/S0375-9474(01)01266-0 CrossRefADSGoogle Scholar
  18. 18.
    H. Hebach, P. Henneberg, H. Kümmel, Phys. Lett. 24B, 134 (1967).  https://doi.org/10.1016/0370-2693(67)90501-1 CrossRefADSGoogle Scholar
  19. 19.
    M.S. Shah, A.N. Mitra, Phys. Rev. C 1, 35 (1970).  https://doi.org/10.1103/PhysRevC.1.35 CrossRefADSGoogle Scholar
  20. 20.
    A. Ghovanlou, D.R. Lehman, Phys. Rev. C 9, 1730 (1974).  https://doi.org/10.1103/PhysRevC.9.1730 CrossRefADSGoogle Scholar
  21. 21.
    M.V. Zhukov, L.V. Chulkov, B.V. Danilin, A.A. Korsheninnikov, Nucl. Phys. A 533, 428 (1991).  https://doi.org/10.1016/0375-9474(91)90526-C CrossRefADSGoogle Scholar
  22. 22.
    M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993).  https://doi.org/10.1016/0370-1573(93)90141-Y CrossRefADSGoogle Scholar
  23. 23.
    W. Glöckle, The Quantum Mechanical Few-Body Problem. Texts and Monographs in Physics (Springer, Berlin, 1983)CrossRefGoogle Scholar
  24. 24.
    L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961). [Zh. Eksp. Teor. Fiz. 39, 1459 (1960)]Google Scholar
  25. 25.
    I.R. Afnan, A.W. Thomas, Top. Curr. Phys. 2, 1 (1977)CrossRefGoogle Scholar
  26. 26.
    E. Ryberg, C. Forssn, L. Platter, Few-Body Syst. 58(4), 143 (2017).  https://doi.org/10.1007/s00601-017-1307-1 CrossRefADSGoogle Scholar
  27. 27.
    E.P. Wigner, Phys. Rev. 73, 1002 (1948).  https://doi.org/10.1103/PhysRev.73.1002 CrossRefADSGoogle Scholar
  28. 28.
    W.N. Polyzou, W. Glöckle, Few-Body Syst. 9(2), 97 (1990).  https://doi.org/10.1007/BF01091701 CrossRefADSGoogle Scholar
  29. 29.
    B.H.J. Mckellar, C.M. Mckay, Aust. J. Phys. 36, 607 (1983).  https://doi.org/10.1071/PH830607 CrossRefADSGoogle Scholar
  30. 30.
    J. Formánek, R.J. Lombard, J. Mareš, Czechoslov. J. Phys. 54(3), 289 (2004).  https://doi.org/10.1023/B:CJOP.0000018127.95600.a3 CrossRefADSGoogle Scholar
  31. 31.
    L. Pricoupenko, Phys. Rev. Lett. 96, 050401 (2006).  https://doi.org/10.1103/PhysRevLett.96.050401 CrossRefADSGoogle Scholar
  32. 32.
    L. Pricoupenko, Phys. Rev. A 73, 012701 (2006).  https://doi.org/10.1103/PhysRevA.73.012701 CrossRefADSGoogle Scholar
  33. 33.
    S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001).  https://doi.org/10.1016/S0375-9474(01)01088-0 CrossRefADSGoogle Scholar
  34. 34.
    D.B. Kaplan, Nucl. Phys. B 494, 471 (1997).  https://doi.org/10.1016/S0550-3213(97)00178-8 CrossRefADSGoogle Scholar
  35. 35.
    D.R. Phillips, Czechoslov. J. Phys. 52, B49 (2002).  https://doi.org/10.1007/s10582-002-0079-z CrossRefGoogle Scholar
  36. 36.
    M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M.J. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, S. Bacca, P. Delheij, G.W.F. Drake, D. Lunney, A. Schwenk, J. Dilling, Phys. Rev. Lett. 108, 052504 (2012).  https://doi.org/10.1103/PhysRevLett.108.052504 CrossRefADSGoogle Scholar
  37. 37.
    D.E. Gonzalez Trotter, F.S. Meneses, W. Tornow, C.R. Howell, Q. Chen, A.S. Crowell, C.D. Roper, R.L. Walter, D. Schmidt, H. Witała, W. Glöckle, H. Tang, Z. Zhou, I. Šlaus, Phys. Rev. C 73, 034001 (2006).  https://doi.org/10.1103/PhysRevC.73.034001 CrossRefADSGoogle Scholar
  38. 38.
    R.A. Arndt, D.D. Long, L. Roper, Nucl. Phys. A 209(3), 429 (1973).  https://doi.org/10.1016/0375-9474(73)90837-3 CrossRefADSGoogle Scholar
  39. 39.
  40. 40.
    G.P. Lepage, Phys. Rev. A 16, 863 (1977).  https://doi.org/10.1103/PhysRevA.16.863 CrossRefADSGoogle Scholar
  41. 41.
    J. Adam Jr., F. Gross, C. Savkli, J.W. Van Orden, Phys. Rev. C 56, 641 (1997).  https://doi.org/10.1103/PhysRevC.56.641 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle PhysicsCentral China Normal UniversityWuhanChina
  4. 4.Department of Physics and Astronomy, Institute of Nuclear and Particle PhysicsOhio UniversityAthensUSA

Personalised recommendations