Advertisement

Few-Body Systems

, 60:60 | Cite as

Electromagnetic Transition Form Factor of the Nucleon \(\Delta \) (1232) in The Nonrelativistic Constituent Quark Model

  • Sara ParsaeiEmail author
Article
  • 10 Downloads

Abstract

The study of nucleon electromagnetic form factors has long been identified as a singular source of information for conception strong interactions in the extent of quark confinement. We have performed a calculation of the helicity amplitudes and the electromagnetic transition form factors of the electromagnetic excitation in \(\Delta \)(1232) resonances. In this paper, the electromagnetic interaction for N \((938)\rightarrow \Delta (1232)\) transitions at four-momenta transfer \(0 \le \hbox {Q2}(\hbox {GeV}^\mathrm{{2}}) \le 8\) in the nonrelativistic constituent quark model calculated. In comparison with present experimental, relativistic and non-relativistic data, our results are in good agreement with the experimental and the other theoretical results, in particular of the medium-high \(\hbox {Q}^{2}\) behavior.

Notes

References

  1. 1.
    I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    L. Zhenping, D. Yubing, M. Weihsing, J. Phys. G 23, 151 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    I.G. Aznauryan, V.D. Burkert, JLAB-PHY-11-1409Google Scholar
  4. 4.
    Z.P. Li, V. Burkert, Zh Li, Phys. Rev. D 46, 70 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    F.E. Close, Z. Li, Phys. Rev. D 42, 2194 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    F. Halzen, A.D. Martin, Quarks and Leptons (Wiley, New York, 1984)Google Scholar
  7. 7.
    I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    T. Kubota, K. Ohta, Phys. Lett. B 65, 374 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Buchmann, E. Hernandez, U. Meyer, A. Faessler, Phys. Rev. C 58, 2478 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Giannini, EPJ Web of Conferences, vol. 73, p. 04017 (2014)Google Scholar
  12. 12.
    H.H. Matevosyan, G.A. Miller, A.W. Thomas, Phys. Rev. C 71, 055204 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Edwards, Nucl. Phys. Proc. Suppl. 140, 290 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Gockeler et al., Phys. Rev. D 71, 034508 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    V.D. Burkert, T.S.H. Lee, Int. J. Mod. Phys. E 13, 108 (2004)CrossRefGoogle Scholar
  16. 16.
    M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 1, 187–192 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Barnett et al., Phys. Rev. D 54, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    F.E. Close, Introduction to Quarks and Partons (Academic, New York, 1978)Google Scholar
  19. 19.
    L.A. Copley, G. Karl, E. Obryk, Nucl. Phys. B 13, 303 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    M. Aiello et al., Phys. Lett. B 387, 215 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Dziembowski, M. Fabre de la Ripelle, G.A. Miller, Phys. Rev. C 53, R2038 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    L.A. Copley, G. Karl, E. Obryk, Phys. Lett. 29, 117 (1969)CrossRefGoogle Scholar
  29. 29.
    R. Koniuk, N. Isgur, Phys. Rev. D 21, 1868 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    S. Parsaei, A.A. Rajabi, Eur. Phys. J. Plus 132, 413 (2017)CrossRefGoogle Scholar
  31. 31.
    M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19, 81–85 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Parsaei, A.A. Rajabi, Eur. Phys. J. Plus 133(7), 265 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Parsaei, A.A. Rajabi, Commun. Theor. Phys. 69, 43 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Y.B. Dong, M.M. Giannini, E. Santopinto, A. Vassallo, Few Body Syst. 55, 873 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    E. Fermi, H. Anderson, A. Lundby, D. Nagle, G. Yodh, Phys. Rev. 85, 935 (1952)ADSCrossRefGoogle Scholar
  36. 36.
    H. Anderson, E. Fermi, E. Long, D. Nagle, Phys. Rev. 85, 936 (1952)ADSCrossRefGoogle Scholar
  37. 37.
    D.E. Nagle, The Delta: The First Pion Nucleon Resonance, Its Discovery and Applications. Los Alamos National Laboratory report no. LALP-84-27 (1984)Google Scholar
  38. 38.
    E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012) and references quoted thereinGoogle Scholar
  39. 39.
    P. Bartsch et al., Phys. Rev. Lett. 88, 142001 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    A.J. Buchmann, E. Hernandez, A. Faessler, Phys. Rev. C 55, 448 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    K. Azizi, Eur. Phys. J. C 61, 311–319 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    V.M. Braun, A. Lenz, G. Peters, A.V. Radyushkin, Phys. Rev. D 73, 034020 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Kelly et al., Phys. Rev. C 75, 025201 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980)ADSCrossRefGoogle Scholar
  45. 45.
    S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    K. Joo et al. (JLab-CLAS), Phys. Rev. Lett. 88, 122001-1 (2002)Google Scholar
  48. 48.
    G. Laveissi\_ere et al. (JLab-Hall A), Phys. Rev. C 69, 045202 (2004)Google Scholar
  49. 49.
    T.M. Aliev, K. Azizi, A. Ozpineci, M. Savci, Phys. Rev. D 77, 114014 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    T.M. Aliev, K. Azizi, A. Ozpineci, Nucl. Phys. A 799, 105–126 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    F.E. Close, A. Donnachie, G. Shaw, Electromagnetic Interactions and Hadronic Structure (Cambridge University Press, Cambridge, 2006)Google Scholar
  52. 52.
    M. Ronniger, BCh. Metsch, Eur. Phys. J. A 49, 8 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    T. Bartel et al., Nucl. Phys. B 58, 469 (1973)ADSCrossRefGoogle Scholar
  54. 54.
    S. Stein et al., Phys. Rev. D 12, 1884 (1975)ADSCrossRefGoogle Scholar
  55. 55.
    D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Chin. Phys. C 33, 1069 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    L. Tiator, D. Drechsel, S. Kamalov, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19(s01), 55 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Physics and Nuclear EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations