Advertisement

Few-Body Systems

, 60:57 | Cite as

Study the Nuclear Form Factors of Low-Lying Excited States in \({}^{7}\hbox {Li}\) Nucleus Using the Shell Model with Skyrme Effective Interaction

  • R. A. Radhi
  • Ali A. AlzubadiEmail author
Article
  • 28 Downloads

Abstract

In the present work, the Skyrme interaction with the core polarization calculations has been used and implemented to study the inelastic electroexcitation form factor for low-lying excited states in \({}^{7}\hbox {Li}\). In particular, the \(1/2^{-}\) (0.478 MeV) and \(7/2^{-}\) (4.630 MeV) states have been analyzed within the \(0\hbar \omega \) shell model including core-polarization effect. The present results reveal that the core-polarization calculation incorporating Skyrme type interaction for the single-particle states reproduces the longitudinal electron scattering data and predicts the diffraction minimum correctly and describes the high momentum data that has not been reported before. The measured \(B(C2{\uparrow })\) value for the \(1/2^{-}\) transition is very well described. The result of the \(7/2^{-}\) transition is close to the measured value. Transverse form factors are better described by the single-particle wave functions obtained from Hartree–Fock with Skyrme type interaction, rather than by the harmonic-oscillator wave functions.

Notes

References

  1. 1.
    T. Sato, K. Koshigiri, H. Ohtsubo, Z. Phys, A-Atoms Nucl. 320, 507 (1985)CrossRefGoogle Scholar
  2. 2.
    J.G.L. Booten, A.G.M. Van Hees, Nucl. Phys. A 569, 510 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    K. Langanke, Adv. Nucl. Phys. 21, 85 (1994)CrossRefGoogle Scholar
  4. 4.
    S. Cohen, D. Kurath, Nucl. Phys. 73, 1 (1965)CrossRefGoogle Scholar
  5. 5.
    S. Karataglidis, B.A. Brown, K. Amos, P.J. Dortmans, Phys. Rev. C 55, 2826 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A. Arima, H. Horiuchi, K. Kubodera, N. Takigawa, Adv. Nucl. Phys. 5, 345 (1972)CrossRefGoogle Scholar
  7. 7.
    D.C. Zheng, B.R. Barrett, J.P. Vary, W.C. Haxton, C.-L. Song, Phys. Rev. C 52, 2488 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    C. Forssén, E. Caurier, P. Navratil, Phys. Rev. C 79, 021303 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C. Cockrell, J.P. Vary, P. Maris, Phys. Rev. C 86, 034325 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    T. Heng, J.P. Vary, P. Maris, Phys. Rev. C 95, 014306 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Brown, R. Radhi, B.H. Wildenthal, Phys. Rep. 101, 313 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Radhi, Z.A. Dakhil, N.S. Manie, Eur. Phys. J. A 50, 115 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, H. Crannell, J.T. O’Brien, Phys. Rev. C 32, 1127 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    P.J. Brussaard, P.W.M. Glaudemans, Shell Model Applications in Nuclear Spectroscopy (North- Holland, Amsterdam, 1977)Google Scholar
  15. 15.
    A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 2 (Benjamin, New York, 1975)zbMATHGoogle Scholar
  16. 16.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    V.O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.G. Reinhard, Int. J. Mod. Phys. E 17, 89 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    B.A. Brown, T. Duguet, T. Otsuka, D. Abe, T. Suzuki, Phys. Rev. C 74, 061303 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    NuShellX, W.D.M. Rae. (2008). http://www.garsington.eclipse.co.uk
  21. 21.
    B.A. Brown, W.D.M. Rae, Nucl. Data. Sheet 120, 115 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    N.J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments, IAEA, Nuclear Data Section, Vienna International Centre, Vienna, Austria (2014)Google Scholar
  24. 24.
    F. Ajzenberg-Selove, Nucl. Phys. A 490, 1 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    B.A. Brown, A. Etchegoyen, N.S. Godwin, W.D.M. Rae, W.A. Richter, W.E. Ormand, E.K. Warburton, J.S. Winfield, L. Zhao, C.H. Zimmerman, MSU-NSCL Report Number 1289, version (2005)Google Scholar
  26. 26.
    J. Lichtenstadt, J. Alster, M.A. Moinester, J. Dubach, R.S. Hicks, G.A. Peterson, S. Kowalski, Phys. Lett. B 219, 394 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    E. Chabanat, P. Bonche, P. Haensel, J. Mayer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    B. Alex Brown, G. Shen, G.C. Hillhouse, J. Meng, A. Trzci’nska, Phys. Rev. C 76, 034305 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    A. Weller, P. Egelhof, R. Čaplar, O. Karban, D. Krämer, K.-H. Möbius, Z. Moroz, K. Rusek, E. Steffens, G. Tungate, K. Blatt, I. Koenig, D. Fick, Phys. Rev. Lett. 55, 480 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    J. Lichtenstadt, J. Alster, M.A. Moinester, J. Dubach, R.S. Hicks, G.A. Peterson, S. Kowalski, Phys. Lett. B 244, 173 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Radhi, A.A. Abdullah, Z.A. Dakhil, N.M. Adeeb, Nucl. Phys. A 696, 441 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    J.G.L. Booten, A.G.M. van Hees, P.M.W. Glaudemans, P.J. Brussaard, Nucl. Phys. A 549, 197 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    M. Unkel, H.M. Hofmann, Phys. Lett. B 261, 211 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq
  2. 2.Department of Radiology TechniquesAl-Hadi UniversityCollegeIraq

Personalised recommendations