Few-Body Systems

, 60:56 | Cite as

Experimental Approach to Three-Nucleon Forces via Few-Nucleon Scattering

  • Kimiko SekiguchiEmail author
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue


Few-nucleon scattering offers a good opportunities to study dynamical aspects of three-nucleon forces that are momentum, spin and iso-spin dependent. In this paper experimental results of deuteron–proton elastic scattering are presented. The data are compared with state-of-the art theoretical predictions based on realistic bare nuclear potentials. Recently, our experimental study has been extended to proton–\(^3\mathrm{He}\) scattering in which the isospin \(T=3/2\) channel in 3NFs could be investigated.



The author would like to thank the collaborators on the experiments performed at RIKEN RI Beam Factory, RCNP Osaka University, and CYRIC Tohoku University. She is also grateful to the strong supports from the theorists, H. Witała, W. Glöckle, H. Kamada, J. Golak, A. Nogga, R. Skibiński, P. U. Sauer, A. Deltuva, and A. C. Fonseca.


  1. 1.
    W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, The three-nucleon continuum: achievements, challenges and applications. Phys. Rep. 274, 107 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    H.-W. Hammer, A. Nogga, A. Schwenk, Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197 (2013). and references thereinADSCrossRefGoogle Scholar
  3. 3.
    N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga, Signatures of three-nucleon interactions in few-nucleon systems. Rep. Prog. Phys. 75, 016301 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Realistic models of pion-exchange three-nucleon interactions. Phys. Rev. C 64, 014001 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Gandolfi, J. Carlson, S. Reddy, A.W. Steiner, R.B. Wiringa, The equation of state of neutron matter, symmetry energy and neutron star structure. Eur. Phys. J. A 50, 10 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    A. Deltuva, A.C. Fonseca, Calculation of proton–\(^3{\rm He}\) elastic scattering between 7 and 35 MeV. Phys. Rev. C 87, 054002 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M. Viviani, L. Girlanda, A. Kievsky, L.E. Marcucci, Effect of three-nucleon interactions in \(p\)-\(^3{\rm He}\) elastic scattering. Phys. Rev. Lett. 111, 172302 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Okamura et al., Development of the RIKEN polarized ion source. AIP Conf. Proc. 293, 84 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ichihara et al., Spin-isospin resonances observed in the \((d,^2{\rm He})\) and \((^{12}{\rm C},^{12}{\rm N})\) reactions at \(E/A = 135~{\rm MeV}\). Nucl. Phys. A 569, 287c (1994)ADSCrossRefGoogle Scholar
  10. 10.
    N. Sakamoto et al., Measurement of the vector and tensor analyzing powers for the d-p elastic scattering at \(E_d\) = 270 MeV. Phys. Lett. B 367, 60 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    H. Sakai et al., Precise Measurement of \(dp\) Elastic Scattering at 270 MeV and Three-Nucleon Force Effects. Phys. Rev. Lett. 84, 5288 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sekiguchi et al., Complete set of precise deuteron analyzing powers at intermediate energies: comparison with modern nuclear force predictions. Phys. Rev. C 65, 034003 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    K. Sekiguchi et al., Polarization transfer measurement for \(^1{\rm H}( {d}, {p})^2{\rm H}\) elastic scattering at 135 MeV/nucleon and three-nucleon force effects. Phys. Rev. C 70, 014001 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    K. Sekiguchi et al., Resolving the discrepancy of 135 MeV \(pd\) elastic scattering cross sections and relativistic effects. Phys. Rev. Lett 95, 162301 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    K. Sekiguchi et al., Three nucleon force effects in intermediate-energy deuteron analyzing powers for \(dp\) elastic scattering. Phys. Rev. C 83, 061001(R) (2011)ADSCrossRefGoogle Scholar
  16. 16.
    K. Sekiguchi et al., Complete set of deuteron analyzing powers for \(dp\) elastic scattering at 250–294 MeV/nucleon and the three-nucleon force. Phys. Rev. C 89, 064007 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    K. Sekiguchi et al., Complete set of deuteron analyzing powers from \(dp\) elastic scattering at 190 MeV/nucleon. Phys. Rev. C 96, 064001 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Coon, H.K. Han, Reworking the Tucson-Melbourne three-nucleon potential. Few Body Syst. 30, 131 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Coon, W. Glöckle, Two-pion-exchange three-nucleon potential: partial wave analysis in momentum space. Phys. Rev. C 23, 1790 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Friar, D. Hüber, U. van Kolck, Chiral symmetry and three-nucleon forces. Phys. Rev. C 59, 53 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    D. Hüber, J.Ł. Friar, A. Nogaa, H. Witała, U. van Kolck, Novel three-nucleon-force terms in the three-nucleon system. Few-Body Syst. 30, 95 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    B.S. Pudliner et al., Quantum Monte Carlo calculations of nuclei with A\(\le \) 7. Phys. Rev. C 56, 1720 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    A. Deltuva, A.C. Fonseca, P.U. Sauer, Momentum-space treatment of the Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. C 71, 054005 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    K. Hatanaka et al., Cross section and complete set of proton spin observables in \( {p}d\) elastic scattering at 250 MeV. Phys. Rev. C 66, 044002 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Maeda et al., Differential cross section and analyzing power measurements for \( {n}d\) elastic scattering at 248 MeV. Phys. Rev. C 76, 014004 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ramazani-Moghaddam-Arani et al., Elastic proton–deuteron scattering at intermediate energies. Phys. Rev. C 78, 014006 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    H. Witała et al., Three-nucleon force in relativistic three-nucleon Faddeev calculations. Phys. Rev. C 83, 044001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    H. Witała et al., Erratum: Three-nucleon force in relativistic three-nucleon Faddeev calculations [Phys. Rev. C 83, 044001 (2011)]. Phys. Rev. C 88, 069904(E) (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S. Binder et al., Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces. Phys. Rev. C 93, 044002 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    E. Epelbaum, private communicationsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations