Few-Body Systems

, 60:50 | Cite as

Two-Neutron Correlations in a Borromean \(\varvec{^{20}\mathrm{C}+n+n}\) System: Sensitivity of Unbound Subsystems

  • Jagjit SinghEmail author
  • W. Horiuchi
  • L. Fortunato
  • A. Vitturi


The structure of \(^{22}\)C plays a vital role in the new physics at subshell closure of \(N=16\) in the neutron-rich region. We study the two-neutron correlations in the ground state of the weakly-bound Borromean nucleus \(^{22}\)C sitting at the edge of the neutron-drip line and its sensitivity to \(\mathrm{core}\)-n potential. For the present study, we employ a three-body (\(\mathrm{core}+n+n\)) structure model designed for describing the Borromean system by explicit coupling of unbound continuum states of the subsystem (\(\mathrm{core}+n\)). We use a density-independent contact-delta interaction to describe the neutron-neutron interaction and its strength is varied to fix the binding energy. Along with the ground-state properties of \(^{22}\)C, we investigate its electric-dipole and monopole responses, discussing the contribution of various configurations. Our results indicate more configuration mixing as compared to the previous studies in the ground state of \(^{22}\)C. However, they strongly depend upon the choice of the \(^{20}\mathrm{C}\)-n potential as well as the binding energy of \(^{22}\)C, which call for new precise measurements for the low-lying continuum structure of the binary system (\(^{20}\mathrm{C}+n\)) and the mass of \(^{22}\)C. These measurements will be essential to understand the Borromean three-body system \(^{22}\)C with more accuracy.



We would like to thank P. Descouvemont and J. A. Lay for useful discussions. J. Singh gratefully acknowledged the financial support from Nuclear Reaction Data Centre (JCPRG), Faculty of science, Hokkaido University, Sapporo.


  1. 1.
    I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson et al., Phys. Rep. 231, 151–199 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    N. Kobayashi, T. Nakamura, J.A. Tostevin, Y. Kondo, N. Aoi et al., Phys. Rev. C 86, 054604 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    L. Gaudefroy, W. Mittig, N.A. Orr, S. Varet, M. Chartier et al., Phys. Rev. Lett. 109, 202503 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    K. Yoneda, N. Aoi, H. Iwasaki, H. Sakurai, H. Ogawa et al., Phys. Rev. C 67, 014316 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    K. Tanaka, T. Yamaguchi, T. Suzuki, T. Ohtsubo, M. Fukuda et al., Phys. Rev. Lett. 104, 062701 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Togano, T. Nakamura, Y. Kondo, J.A. Tostevin, A.T. Saito et al., Phys. Lett. B 761, 412–418 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T. Nagahisa, W. Horiuchi, Phys. Rev. C 97, 054614 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    W. Horiuchi, Y. Suzuki, B. Abu-Ibrahim, A. Kohama, Phys. Rev. C 75, 044607 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    B. Abu-Ibrahim, W. Horiuchi, A. Kohama, Y. Suzuki, Phys. Rev. C 77, 034607 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, Lauro Tomio, Phys. Lett. B 697, 90 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, Lauro Tomio, Phys. Lett. B 715, 282(E) (2012)Google Scholar
  16. 16.
    H.T. Fortune, R. Sherr, Phys. Rev. C 85, 027303 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Phys. Rev. C 86, 034331 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    B. Acharya, C. Ji, D.R. Phillips, Phys. Lett. B 723, 196 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    K. Ogata, T. Myo, T. Furumoto, T. Matsumoto, M. Yahiro, Phys. Rev. C 88, 024616 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    T. Inakura, W. Horiuchi, Y. Suzuki, T. Nakatsukasa, Phys. Rev. C 89, 064316 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kucuk, J.A. Tostevin, Phys. Rev. C 89, 034607 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Suzuki, T. Otsuka, C. Yuan, N. Alahari, Phys. Lett. B 753, 199 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    L.A. Souza, E. Garrido, T. Frederico, Phys. Rev. C 94, 064002 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    H.T. Fortune, Phys. Rev. C 94, 064307 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    E.C. Pinilla, P. Descouvemont, Phys. Rev. C 94, 24620 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    N.B. Shulgina, S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Phys. Rev. C 97, 064307 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    A.B. Migdal, Sov. J. Nucl. Phys. 16, 238 (1973)Google Scholar
  28. 28.
    S. Mosby, N.S. Badger, T. Baumann, D. Bazin, M. Bennett et al., Nucl. Phys. A 909, 69 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    L. Fortunato, R. Chatterjee, J. Singh, A. Vitturi, Phys. Rev. C 90, 064301 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    J. Singh, L. Fortunato, A. Vitturi, R. Chatterjee, Eur. Phys. J. A 52, 209 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J. Singh, Ph.D. thesis, University of Padova, Italy (2016),
  32. 32.
    J. Singh, L. Fortunato, Acta Physica Polonica B 47, 1001 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.H. Rawitscher, M. Yahiro, Phys. Rep. 154, 125 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    R.A.D. Piyadasa, M. Kawai, M. Kamimura, M. Yahiro, Phys. Rev. C 60, 044611 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56, 3054 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    A. Vitturi, F. Pérez-Bernal, Nucl. Phys. A 834, 428c (2010)ADSCrossRefGoogle Scholar
  37. 37.
    K. Hagino, A. Vitturi, F. Pérez-Bernal, H. Sagawa, J. Phys. G Nucl. Part. Phys. 38, 015105 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Ozawa, O. Bochkarev, L. Chulkov, D. Cortina, H. Geissel et al., Nucl. Phys. A 691, 599 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    X.X. Sun, J. Zhao, S.G. Zhou, Phys. Lett. B 785, 530–535 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    G.F. Bertsch, H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    W. Horiuchi, Y. Suzuki, Phys. Rev. C 73, 037304 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 019901(E) (2006)ADSCrossRefGoogle Scholar
  44. 44.
    H. Esbensen, G.F. Bertsch, Nucl. Phys. A 542, 310 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nuclear Reaction Data Centre, Faculty of ScienceHokkaido UniversitySapporoJapan
  2. 2.Research Center for Nuclear Physics (RCNP)Osaka UniversityIbarakiJapan
  3. 3.Department of PhysicsHokkaido UniversitySapporoJapan
  4. 4.Dipartimento di Fisica e Astronomia “G.Galilei” and INFN-Sezione di PadovaPaduaItaly

Personalised recommendations