Advertisement

Few-Body Systems

, 60:35 | Cite as

On Calculating Response Functions Via Their Lorentz Integral Transforms

  • Victor D. EfrosEmail author
  • Winfried Leidemann
  • Veronika Yu. Shalamova
Article
  • 20 Downloads
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue

Abstract

The accuracy of reconstruction of a response function from its Lorentz integral transform is studied in an exactly solvable model. An inversion procedure is elaborated in detail and features of the procedure are studied. Unlike results in the literature pertaining to the same model, the response function is reconstructed from its Lorentz integral transform with rather high accuracy.

Notes

Acknowledgements

Acknowledgement of support is given to RFBR Grant No. 18-02-00778 (V.D.E and V.Yu.S.).

References

  1. 1.
    V.D. Efros, W. Leidemann, G. Orlandini, Phys. Lett. B 338, 130 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    V.D. Efros, W. Leidemann, G. Orlandini, N. Barnea, J. Phys. G: Nucl. Part. Phys. 34, R459 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Suzuki, W. Horiuchi, D. Baye, Progr. Theor. Phys. 123, 547 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    V.D. Efros, W. Leidemann, G. Orlandini, Few Body Syst. 26, 251 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    V.D. Efros, Phys. At. Nucl. 62, 1833 (1999) arXiv:nucl-th/9903024
  6. 6.
    C. Reiss, E.L. Tomusiak, W. Leidemann, G. Orlandini, Eur. Phys. J. A 17, 589 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    N. Barnea, E. Livertz, Few Body Syst. 48, 11 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    W. Leidemann, Few Body Syst. 42, 139 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    W. Leidemann, Phys. Rev. C 91, 054001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    W. Leidemann, S. Deflorian, V.D. Efros, Few Body Syst. 58, 27 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    S. Deflorian, V.D. Efros, W. Leidemann, Few Body Syst. 58, 3 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    W. Glöckle, M. Schwamb, Few Body Syst. 46, 55 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    N. Barnea, V.D. Efros, W. Leidemann, G. Orlandini, Few Body Syst. 47, 201 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    V.D. Efros, Phys. Rev. E 86, 016704 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    D. Andreasi, W. Leidemann, C. Reiss, M. Schwamb, Eur. Phys. J. A 24, 361 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    W.H. Press, S.A. Teukolsky, W.T. Weterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1997)Google Scholar
  17. 17.
    M.V. Zhukov, V.D. Éfros, Yad. Fiz. 14, 577 (1971) [Sov. J. Nucl. Phys. 14, 322 (1972)]Google Scholar
  18. 18.
    V.D. Efros, Phys. Rev. C 99, 034620 (2019)Google Scholar
  19. 19.
    N.I. Achieser, Theory of Approximation (Dover, New York, 2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Victor D. Efros
    • 1
    • 2
    Email author
  • Winfried Leidemann
    • 3
    • 4
  • Veronika Yu. Shalamova
    • 1
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Dipartimento di FisicaUniversità di TrentoTrentoItaly
  4. 4.INFN-TIFPA Trento Institute of Fundamental Physics and ApplicationsTrentoItaly

Personalised recommendations