Advertisement

Few-Body Systems

, 60:22 | Cite as

Dimensional Effects in Efimov Physics

  • M. T. YamashitaEmail author
Article
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue

Abstract

Efimov physics is drastically affected by the change of spatial dimensions. Efimov states occur in a tridimensional (3D) environment, but disappear in two (2D) and one (1D) dimensions. In this paper, dedicated to the memory of Prof. Faddeev, we will review some recent theoretical advances related to the effect of dimensionality in the Efimov phenomenon considering three-boson systems interacting by a zero-range potential. We will start with a very ideal case with no physical scales (Rosa et al. in Phys Rev A 97:050701, 2018), passing to a system with finite energies in the Born–Oppenheimer (BO) approximation (Rosa et al. in J Phys B At Mol Opt Phys 52:025101, 2018) and finishing with a general system (Sandoval et al. in J Phys B At Mol Opt Phys 51:065004, 2018). The physical reason for the appearance of the Efimov effect is given essentially by two reasons which can be revealed by the BO approximation—the form of the effective potential is proportional to \(1/R^2\) (R is the relative distance between the heavy particles) and its strength is smaller than the critical value given by \(-(D-2)^2/4\), where D is effective dimension.

Notes

Acknowledgements

This work was partly supported by funds provided by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP Grants No. 2016/01816-2, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq Grant No. 302075/2016-0(MTY), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES Grant No. 88881.030363/2013-01. I would like to especially thank my collaborators D.S. Rosa, J.H. Sandoval, T. Frederico and G. Krein for all discussions during the development of the articles reported in this review.

References

  1. 1.
    J. Maji, S.M. Bhattacharjee, F. Seno, A. Trovato, When a DNA triple helix melts: an analogue of the Efimov state. New J. Phys. 12, 083057 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    V. Efimov, Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. 33B, 563 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kraemer et al., Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 3115 (2006)CrossRefGoogle Scholar
  4. 4.
    C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  5. 5.
    E. Braaten, H.-W. Hammer, Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E.A. Kolganova, A.K. Motovilov, W. Sandhas, The \(^4\)He trimer as an Efimov system: latest developments. Few-Body Syst. 58, 35 (2017). and references thereinADSCrossRefGoogle Scholar
  7. 7.
    M. Kunitski et al., Observation of the Efimov state of the helium trimer. Science 348, 551 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Zeller et al., Imaging the He\(_2\) quantum halo state using a free electron laser. Proc. Natl. Acad. Sci. U.S.A. 113, 14651 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, Low-dimensional trapped gases. Phys. IV Fr. 116, 5 (2004)Google Scholar
  10. 10.
    E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Nishida, S. Tan, Liberating Efimov physics from three dimensions. Few-Body Syst. 51, 191 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Levinsen, P. Massignan, M.M. Parish, Efimov trimers under strong confinement. Phys. Rev. X 4, 031020 (2014)Google Scholar
  13. 13.
    E.R. Christensen, A.S. Jensen, E. Garrido, Efimov states of three unequal bosons in non-integer dimensions. Few-Body Syst. 59, 136 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    P. Naidon, S. Endo, Efimov physics: a review. Rep. Prog. Phys. 80, 056001 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Nishida, Semisuper Efimov effect of two-dimensional bosons at a three-body resonance. Phys. Rev. Lett. 118, 230601 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in \(D\) spatial dimensions in \(AAB\) systems. Phys. Rev. A 97, 050701 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    G.S. Danilov, On the three-body problem with short-range forces. Sov. Phys. JETP 13, 349 (1961)MathSciNetzbMATHGoogle Scholar
  18. 18.
    D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in a \(D\)-dimensional Born–Oppenheimer approach. J. Phys. B At. Mol. Opt. Phys. 52, 025101 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    A.C. Fonseca, E.F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320, 273 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Sandoval et al., Squeezing the Efimov effect. J. Phys. B At. Mol. Opt. Phys. 51, 065004 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    G.V. Skornyakov, K.A. Ter-Martirosyan, Three body problem for short range forces. I. Scattering of low energy neutrons by deuterons. Zh. Eksp. Teor. Fiz. 31, 775 (1957)zbMATHGoogle Scholar
  22. 22.
    M.T. Yamashita, R.S.M. Marques de Carvalho, L. Tomio, T. Frederico, Scaling predictions for radii of weakly bound triatomic molecules. Phys. Rev. A 68, 012506 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mohapatra, E. Braaten, Conformality lost in Efimov physics. Phys. Rev. A 98, 013633 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    M.T. Yamashita, F.F. Bellotti, T. Frederico, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Single-particle momentum distributions of Efimov states in mixed-species systems. Phys. Rev. A 87, 062702 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, London, 1977)zbMATHGoogle Scholar
  26. 26.
    F.F. Bellotti, T. Frederico, M.T. Yamashita, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Mass-imbalanced three-body systems in two dimensions. J. Phys. B 46, 055301 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Häfner, J. Ulmanis, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller, Role of the intraspecies scattering length in the Efimov scenario with large mass difference. Phys. Rev. A 95, 062708 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    J. Martins, H.V. Ribeiro, L.R. Evangelista, L.R. da Silva, E.K. Lenzi, Fractional Schrödinger equation with noninteger dimensions. App. Math. Comput. 219, 2313 (2012)CrossRefGoogle Scholar
  29. 29.
    L.D. Faddeev, Scattering theory for a three-particle system. Sov. Phys. JETP 12, 1014 (1961)MathSciNetGoogle Scholar
  30. 30.
    J. Ulmanis, S. Häfner, R. Pires, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller, Heteronuclear Efimov scenario with positive intraspecies scattering length. Phys. Rev. Lett. 117, 153201 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    T. Lompe, T.B. Ottenstein, F. Serwane, A.N. Wenz, G. Zürn, S. Jochim, Radio-frequency association of Efimov trimers. Science 330, 940 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Física TeóricaUniversidade Estadual Paulista, UNESPSão PauloBrazil

Personalised recommendations