Advertisement

Few-Body Systems

, 60:20 | Cite as

Pseudo-Scalar \(\mathbf{q}\bar{\mathbf{q}}\) Bound States at Finite Temperatures Within a Dyson-Schwinger–Bethe-Salpeter Approach

  • S. M. Dorkin
  • L. P. KaptariEmail author
  • B. Kämpfer
Article
  • 56 Downloads

Abstract

The combined Dyson-Schwinger–Bethe-Salpeter equations are employed at non-zero temperature. The truncations refer to a rainbow-ladder approximation augmented with an interaction kernel which facilitates a special temperature dependence. At low temperatures, \(T \rightarrow 0\), we recover a quark propagator from the Dyson–Schwinger (gap) equation which delivers, e.g. mass functions B, quark renormalization wave function A, and two-quark condensate \(\langle q \bar{q} \rangle \) smoothly interpolating to the \(T = 0\) results, despite the broken O(4) symmetry in the heat bath and discrete Matsubara frequencies. Besides the Matsubara frequency difference entering the interaction kernel, often a Debye screening mass term is introduced when extending the \(T = 0\) kernel to non-zero temperatures. At larger temperatures, however, we are forced to drop this Debye mass in the infra-red part of the longitudinal interaction kernel to keep the melting of the two-quark condensate in a range consistent with lattice QCD results. Utilizing that quark propagator for the first few hundred fermion Matsubara frequencies we evaluate the Bethe–Salpeter vertex function in the pseudo-scalar \( q \bar{q}\) channel for the lowest boson Matsubara frequencies and find a competition of \( q \bar{q}\) bound states and quasi-free two-quark states at \(T = \mathcal{O}\)(100 MeV). This indication of pseudo-scalar meson dissociation below the anticipated QCD deconfinement temperature calls for an improvement of the approach, which is based on an interaction kernel adjusted to the meson spectrum at zero temperature.

Notes

Acknowledgements

This work was supported in part by the Heisenberg-Landau program of the JINR-FRG collaboration. LPK appreciates the warm hospitality at the Helmholtz Centre Dresden-Rossendorf. The authors acknowledge discussions with Dr. J. Vorberger.

References

  1. 1.
    C.S. Fischer, S. Kubrak, R. Williams, Spectra of heavy mesons in the Bethe–Salpeter approach. Eur. Phys. J. A 51, 10 (2015)ADSGoogle Scholar
  2. 2.
    T. Hilger, M. Gómez-Rocha, A. Krassnigg, Light-quarkonium spectra and orbital-angular-momentum decomposition in a Bethe–Salpeter-equation approach. Eur. Phys. J. C 77, 625 (2017)ADSGoogle Scholar
  3. 3.
    P. Maris, C.D. Roberts, Pi- and K meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997)ADSGoogle Scholar
  4. 4.
    P. Maris, P.C. Tandy, Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)ADSGoogle Scholar
  5. 5.
    S.M. Dorkin, L.P. Kaptari, B. Kämpfer, Accounting for the analytical properties of the quark propagator from the Dyson–Schwinger equation. Phys. Rev. C 91, 055201 (2015)ADSGoogle Scholar
  6. 6.
    T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Spectra of heavy quarkonia in a Bethe–Salpeter-equation approach. Phys. Rev. D 91, 034013 (2015)ADSGoogle Scholar
  7. 7.
    P. Maris, C.D. Roberts, Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297 (2003)ADSGoogle Scholar
  8. 8.
    A. Holl, A. Krassnigg, C.D. Roberts, Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203 (2004)ADSGoogle Scholar
  9. 9.
    M. Blank, A. Krassnigg, Bottomonium in a Bethe–Salpeter-equation study. Phys. Rev. D 84, 096014 (2011)ADSGoogle Scholar
  10. 10.
    M. Blank, A. Krassnigg, A. Maas, Rho-meson, Bethe–Salpeter equation, and the far infrared. Phys. Rev. D 83, 034020 (2011)ADSGoogle Scholar
  11. 11.
    D. Jarecke, P. Maris, P.C. Tandy, Strong decays of light vector mesons. Phys. Rev. C 67, 035202 (2003)ADSGoogle Scholar
  12. 12.
    A. Krassnigg, P. Maris, Pseudoscalar and vector mesons as q anti-q bound states. J. Phys. Conf. Ser. 9, 153 (2005)ADSGoogle Scholar
  13. 13.
    C.D. Roberts, M.S. Bhagwat, A. Hol, S.V. Wright, Aspects of hadron physics. Eur. Phys. J. Spec. Top. 140, 53 (2007)Google Scholar
  14. 14.
    S.M. Dorkin, T. Hilger, L.P. Kaptari, B. Kämpfer, Heavy pseudoscalar mesons in a Dyson–Schwinger-Bethe–Salpeter approach. Few Body Syst. 49, 247 (2011)ADSGoogle Scholar
  15. 15.
    S.M. Dorkin, L.P. Kaptari, C. Ciofi degli Atti, B. Kämpfer, Solving the Bethe–Salpeter equation in Euclidean space. Few Body Syst. 49, 233 (2011)ADSGoogle Scholar
  16. 16.
    S.M. Dorkin, M. Beyer, S.S. Semikh, L.P. Kaptari, Two-fermion bound states within the Bethe–Salpeter approach. Few Body Syst. 42, 1 (2008)ADSGoogle Scholar
  17. 17.
    S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Interaction model for the gap equation. Phys. Rev. C 84, 042202 (2011)ADSGoogle Scholar
  18. 18.
    S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Investigation of rainbow-ladder truncation for excited and exotic mesons. Phys. Rev. C 85, 035202 (2012)ADSGoogle Scholar
  19. 19.
    P. Jain, H.J. Munczek, Calculation of the pion decay constant in the framework of the Bethe–Salpeter equation. Phys. Rev. D 44, 1873 (1991)ADSGoogle Scholar
  20. 20.
    H.J. Munczek, P. Jain, Relativistic pseudoscalar q anti-q bound states: results on Bethe–Salpeter wave functions and decay constants. Phys. Rev. D 46, 438 (1992)ADSGoogle Scholar
  21. 21.
    M.R. Frank, C.D. Roberts, Model gluon propagator and pion and rho meson observables. Phys. Rev. C 53, 390 (1996)ADSGoogle Scholar
  22. 22.
    R. Alkofer, P. Watson, H. Weigel, Mesons in a Poincare covariant Bethe–Salpeter approach. Phys. Rev. D 65, 094026 (2002)ADSGoogle Scholar
  23. 23.
    C.S. Fischer, P. Watson, W. Cassing, Probing unquenching effects in the gluon polarisation in light mesons. Phys. Rev. D 72, 094025 (2005)ADSGoogle Scholar
  24. 24.
    R. Alkofer, L. von Smekal, The infrared behavior of QCD Green’s functions: confinement dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rep. 353, 281 (2001)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B 380, 7 (1996)ADSGoogle Scholar
  26. 26.
    R. Delbourgo, M.D. Scadron, Proof of the Nambu–Goldstone realization for vector gluon quark theories. J. Phys. G Nucl. Phys. 5, 1621 (1979)ADSGoogle Scholar
  27. 27.
    H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736 (1995)ADSGoogle Scholar
  28. 28.
    T. Hatsuda, Y. Koike, S.H. Lee, Finite temperature QCD sum rules reexamined: rho, omega and A1 mesons. Nucl. Phys. B 394, 221 (1993)ADSGoogle Scholar
  29. 29.
    A. Ayala, A. Bashir, Longitudinal and transverse fermion boson vertex in QED at finite temperature in the HTL approximation. Phys. Rev. D 64, 025015 (2001)ADSGoogle Scholar
  30. 30.
    C.D. Roberts, S.M. Schmidt, Dyson–Schwinger equations: density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 45, S1–S103 (2000)ADSGoogle Scholar
  31. 31.
    T. Matsubara, A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351 (1955)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    R. Haag, N. Hugenholtz, M. Winnink, On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215 (1967)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    J. Dereziński, V. Jakšić, C.-A. Pillet, Perturbation theory of W\(^*\)-dynamics. Liouvilleans and KMS-states. Rev Math Phys 15, 447 (2003)zbMATHGoogle Scholar
  34. 34.
    J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, New York, 1989)zbMATHGoogle Scholar
  35. 35.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Chapter 3: The diagram technique for \(T\ne 0\), in Methods of Quantum Field Theory in Statistical Physics, ed. by R.A. Silverman (Prentice Hall, Inc., Englewood Cliffs, 1963)Google Scholar
  36. 36.
    C.S. Fischer, J.M. Pawlowski, A. Rothkopf, C.A. Welzbacher, Bayesian analysis of quark spectral properties from the Dyson–Schwinger equation. Phys. Rev. D 98, 014009 (2018)ADSGoogle Scholar
  37. 37.
    K.-L. Wang, Y.-X. Liu, L. Chang, C.D. Roberts, S.M. Schmidt, Baryon and meson screening masses. Phys. Rev. D 87, 074038 (2013)ADSGoogle Scholar
  38. 38.
    M. Ishii, H. Kouno, M. Yahiro, Model prediction for temperature dependence of meson pole masses from LQCD on meson screening masses. Phys. Rev. D 95, 114022 (2017)ADSGoogle Scholar
  39. 39.
    C.D. Roberts, Hadron properties and Dyson–Schwinger equations. Prog. Part. Nucl. Phys. 61, 50 (2008)ADSGoogle Scholar
  40. 40.
    P.D. Morley, M.B. Kislinger, Relativistic many body theory, quantum chromodynamics and neutron stars/supernova. Phys. Rep. 51, 63 (1979)ADSMathSciNetGoogle Scholar
  41. 41.
    D. Blaschke, A. Dubinin, A. Radzhabov, A. Wergieluk, Mott dissociation of pions and kaons in hot, dense quark matter. Phys. Rev. D 96, 094008 (2017)Google Scholar
  42. 42.
    Y. Nambu, G. J.-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 122, 345 (1961)ADSGoogle Scholar
  43. 43.
    S.P. Klevansky, The Nambu–Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 64, 649 (1992)ADSMathSciNetGoogle Scholar
  44. 44.
    T. Hatsuda, T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian. Phys. Rep. 247, 221 (1994)ADSGoogle Scholar
  45. 45.
    P.N. Meisinger, M.C. Ogilvie, Coupling the deconfining and chiral transitions. Nucl. Phys. B 47(Proc. Suppl.), 519 (1996)Google Scholar
  46. 46.
    H. Hansen, W.M. Alberico, A. Beraudo, A. Molinari, M. Nardi, C. Ratti, Mesonic correlation functions at finite temperature and density in the Nambu–Jona-Lasinio model with a Polyakov loop. Phys. Rev. D 75, 065004 (2007)ADSGoogle Scholar
  47. 47.
    T. Hatsuda, T. Kunihiro, Fluctuation effects in hot quark matter: precursors of chiral transition at finite temperature. Phys. Rev. Lett. 55, 158 (1985)ADSGoogle Scholar
  48. 48.
    A.E. Radzhabov, D. Blaschke, M. Buballa, M.K. Volkov, Nonlocal Polyakov–Nambu–Jona-Lasinio model beyond mean field and the QCD phase transition. Phys. Rev. D 83, 116004 (2011)ADSGoogle Scholar
  49. 49.
    B.-J. Schaefer, J.M. Pawlowski, J. Wambach, Phase structure of the Polyakov-quark-meson model. Phys. Rev. D 76, 074023 (2007)ADSGoogle Scholar
  50. 50.
    D. Horvatic, D. Blaschke, D. Klabucar, O. Kaczmarek, Width of the QCD transition in a Polyakov-loop DSE model. Phys. Rev. D 84, 016005 (2011)ADSGoogle Scholar
  51. 51.
    D. Blaschke, M. Buballa, A.E. Radzhabov, M.K. Volkov, Effects of mesonic correlations in the QCD phase transition. Yad. Fiz. 71, 2012 (2008)Google Scholar
  52. 52.
    D. Blaschke, M. Buballa, A.E. Radzhabov, M.K. Volkov, Effects of mesonic correlations in the QCD phase transition. Phys. Atom. Nucl. 71, 1981 (2008)ADSGoogle Scholar
  53. 53.
    G.A. Contrera, A.G. Grunfeld, D.B. Blaschke, Phase diagrams in nonlocal Polyakov–Nambu–Jona-Lasinio models constrained by Lattice QCD results. Phys. Part. Nucl. Lett. 11, 342 (2014)Google Scholar
  54. 54.
    S. Benic, D. Horvati, J. Klari, Recovering the chiral critical end-point via delocalization of quark interactions. Phys. Rev. D 89, 054025 (2014)ADSGoogle Scholar
  55. 55.
    H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015)ADSzbMATHGoogle Scholar
  56. 56.
    J.M. Pawlowski, N. Strodthoff, N. Wink, Finite temperature spectral functions in the O(N)-model. E-print: arXiv:1711.07444 [hep-th]
  57. 57.
    N. Strodthoff, Self-consistent spectral functions in the O(N) model from the functional renormalization group. Phys. Rev. D 95, 076002 (2017)ADSGoogle Scholar
  58. 58.
    J.M. Pawlowski, N. Strodthoff, Real time correlation functions and the functional renormalization group. Phys. Rev. D 92, 094009 (2015)ADSGoogle Scholar
  59. 59.
    P. Maris, C.D. Roberts, QCD modeling of hadron physics. Nucl. Phys. Proc. Suppl. 161, 136–152 (2006)ADSGoogle Scholar
  60. 60.
    C.D. Roberts, A. Williams, Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)ADSGoogle Scholar
  61. 61.
    S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, Quark spectral density and a strongly-coupled QGP. Phys. Rev. D 84, 014017 (2011)ADSGoogle Scholar
  62. 62.
    P. Maris, C.D. Roberts, S.M. Schmidt, P.C. Tandy, T-dependence of pseudoscalar and scalar correlations. Phys. Rev. C 63, 025202 (2001)ADSGoogle Scholar
  63. 63.
    S.-X. Qin, D.H. Rischke, Quark spectral function and deconfinement at nonzero temperature. Phys. Rev. D 88, 056007 (2013)ADSGoogle Scholar
  64. 64.
    S.M. Dorkin, M. Viebach, L.P. Kaptari, B. Kämpfer, Extending the truncated Dyson–Schwinger equation to finite temperatures, J. Mod. Phys. 7, 2071 (2016). E-Print: arXiv:1512.06596 [nucl-th]ADSGoogle Scholar
  65. 65.
    M. Blank, A. Krassnigg, The QCD chiral transition temperature in a Dyson–Schwinger-equation context. Phys. Rev. D 82, 034006 (2010)ADSGoogle Scholar
  66. 66.
    F. Gao, J. Chen, Y.-X. Liu, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Phase diagram and thermal properties of strong-interaction matter. Phys. Rev. D 93, 094019 (2016)ADSGoogle Scholar
  67. 67.
    F. Gao, S.-X. Qin, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Zero mode in a strongly coupled quark gluon plasma. Phys. Rev. D 89, 076009 (2014)ADSGoogle Scholar
  68. 68.
    F. Karsch, M. Kitazawa, Quark propagator at finite temperature and finite momentum in quenched lattice QCD. Phys. Rev. D 80, 056001 (2009)ADSGoogle Scholar
  69. 69.
    C.S. Fischer, J. Luecker, C.A. Welzbacher, Phase structure of three and four flavor QCD. Phys. Rev. D 90, 034022 (2014)ADSGoogle Scholar
  70. 70.
    C.S. Fischer, J.A. Mueller, Chiral and deconfinement transition from Dyson–Schwinger equations. Phys. Rev. D 80, 074029 (2009)ADSGoogle Scholar
  71. 71.
    G. Eichmann, C.S. Fischer, C.A. Welzbacher, Baryon effects on the location of QCDs critical end point. Phys. Rev. D 93, 034013 (2016)ADSGoogle Scholar
  72. 72.
    C.S. Fischer, J. Lueckerb, C.A. Welzbacher, Locating the critical end point of QCD. Nucl. Phys. A 931, 774 (2014)ADSGoogle Scholar
  73. 73.
    H.-F. Fu, Q. Wang, Quark propagator in a truncation scheme beyond the rainbow approximation. Phys. Rev. D 93, 014013 (2016)ADSGoogle Scholar
  74. 74.
    D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations. Phys. Rev. D 93, 096010 (2016)ADSGoogle Scholar
  75. 75.
    B. El-Bennich, G. Krein, E. Rojas, F.E. Serna, Excited hadrons and the analytical structure of bound-state interaction kernels. Few Body Syst. 57, 955 (2016)ADSGoogle Scholar
  76. 76.
    Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit II. JHEP 0906, 88 (2009)ADSGoogle Scholar
  77. 77.
    C.S. Fischer, A. Maas, J.M. Pawlowski, On the infrared behavior of Landau gauge Yang–Mills theory. Ann. Phys. 324, 2408 (2009)ADSMathSciNetzbMATHGoogle Scholar
  78. 78.
    M.R. Pennington, D.J. Wilson, Are the dressed gluon and ghost propagators in the landau gauge presently determined in the confinement regime of QCD? Phys. Rev. D 84, 094028 (2011). [ibid. D 84 (2011) 119901, Erratum]ADSGoogle Scholar
  79. 79.
    N. Souchlas, Infrared and ultraviolet QCD dynamics with quark mass for \(\text{J}=0,1\) mesons, June (2010). arXiv:1006.0942
  80. 80.
    H. Umezawa, H. Matsumoto, M. Tachiki, Termo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982)Google Scholar
  81. 81.
    A.J. Niemi, G.W. Semenoff, Finite temperature quantum field theory in Minkowski space. Ann. Phys. 152, 105 (1984)ADSGoogle Scholar
  82. 82.
    M. le Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics, ed. by P.V. Landshoff, D.R. Nelson, D.W. Sciama, S. Weinberg (Cambridge University Press, Cambridge, 1996)Google Scholar
  83. 83.
    N.P. Landsman, ChG van Weert, Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)ADSMathSciNetGoogle Scholar
  84. 84.
    P.C. Martin, J. Schwinger, Theory of many particle systems. 1. Phys. Rev. 115, 1342 (1959)ADSMathSciNetzbMATHGoogle Scholar
  85. 85.
    A. Cucchieri, A. Maas, T. Mendes, Infrared properties of propagators in Landau-gauge pure Yang–Mills theory at finite temperature. Phys. Rev. D 75, 076003 (2007)ADSGoogle Scholar
  86. 86.
    C.S. Fischer, A. Maas, J.A. Müller, Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3). Eur. Phys. J. C 68, 165 (2010)ADSGoogle Scholar
  87. 87.
    M. Harada, S. Tagaki, Phase transition in two flavor dense QCD from the Schwinger–Dyson equation. Prog. Theor. Phys. 107, 561 (2002)ADSGoogle Scholar
  88. 88.
    D.K. Hong, V.A. Miransky, I.A. Shovkovy, L.C.R. Wijewardhana, Schwinger–Dyson approach to color superconductivity in dense QCD. Phys. Rev. D 61, 056001 (2000). [ibid. D 62, (2000),059903, Erratum]ADSGoogle Scholar
  89. 89.
    R. Alkofer, P.A. Amundsen, K. Langfeld, Chiral symmetry breaking and pion properties at finite temperatures. Z. Phys. C 42, 199 (1989)Google Scholar
  90. 90.
    S. Tagaki, Phase structure of hot and / or dense QCD with the Schwinger–Dyson equation. Prog. Theor. Phys. 109, 233 (2003)ADSGoogle Scholar
  91. 91.
    A. Bender, D. Blaschke, Yu. Kalinovsky, C.D. Roberts, Continuum study of deconfinement at finite temperature. Phys. Rev. Lett. 77, 3724 (1996)ADSGoogle Scholar
  92. 92.
    D. Blaschke, G. Burau, YuL Kalinovsky, P. Maris, P.C. Tandy, Finite T meson correlations and quark deconfinement. Int. J. Mod. Phys. A 16, 2267 (2001)ADSzbMATHGoogle Scholar
  93. 93.
    S.M. Dorkin, L.P. Kaptari, T. Hilger, B. Kämpfer, Analytical properties of the quark propagator from a truncated Dyson–Schwinger equation in complex Euclidean space. Phys. Rev. C 89, 034005 (2014)ADSGoogle Scholar
  94. 94.
    S. Llewellyn, A relativistic formulation for the quark model for mesons. Ann. Phys. 53, 521 (1969)ADSGoogle Scholar
  95. 95.
    C.S. Fischer, J. Luecker, Propagators and phase structure of \(\text{ Nf }=2\) and \(\text{ Nf }=2+1\) QCD. Phys. Lett. B 718, 1036 (2013)ADSzbMATHGoogle Scholar
  96. 96.
    S. Fritzsche, Maple procedures for the coupling of angular momenta. An up-date of the Racah module. Comput. Phys. Commun. 180, 2021 (2009)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  2. 2.International University DubnaDubnaRussia
  3. 3.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  4. 4.Institut für Theoretische PhysikTU DresdenDresdenGermany

Personalised recommendations