Few-Body Systems

, 60:27 | Cite as

Theory of Surrogate Nuclear and Atomic Reactions with Three Charged Particles in the Final State Proceeding Through a Resonance in the Intermediate Subsystem

  • A. M. Mukhamedzhanov
  • A. S. KadyrovEmail author
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue


Within a few-body formalism, we develop a general theory of surrogate nuclear and atomic reactions with excitation of a resonance in the intermediate binary subsystem leading to three charged particles in the final state. The Coulomb interactions between the spectator and the resonance in the intermediate state and between the three particles in the final state are taken into account. Final-state three-body Coulomb multiple-scattering effects are accounted for using the formalism of the three-body Coulomb asymptotic states based on the work published by one of us (A.M.M.) under the guidance of L. D. Faddeev. An expression is derived for the triply differential cross section. It can be used for investigation of the Coulomb effects on the resonance line shape as well as the energy dependence of the cross section. We find that simultaneous inclusion of the Coulomb effects in the intermediate and final state decreases the effect of the final-state Coulomb interactions on the triply differential cross section.



A.S.K. acknowledges a support from the Australian Research Council. A.M.M. acknowledges a support from the U.S. DOE Grant No. DE-FG02-93ER40773, the U.S. NSF Grant No. PHY-1415656, and the NNSA Grant No. DE-NA0003841.


  1. 1.
    G. Baur, Phys. Lett. B178, 135 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    C. Spitaleri, M. Aliotta, S. Cherubini, M. Lattuada, Dj Miljanić, S. Romano, N. Soic, M. Zadro, R.A. Zappalà, Phys. Rev. C60, 055802 (1999)ADSGoogle Scholar
  3. 3.
    A.M. Mukhamedzhanov, L.D. Blokhintsev, B.F. Irgaziev, A.S. Kadyrov, M. La Cognata, C. Spitaleri, R.E. Tribble, J. Phys. G Nucl. Part Phys. 35, 014016 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Tribble, C.A. Bertulani, M. La Cognata, A.M. Mukhamedzhanov, C. Spitaleri, Rep. Prog. Phys. 77, 106901 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)Google Scholar
  6. 6.
    M.Y. Kuchiev, S.A. Sheinerman, Zh. Eksp. Teor. Fiz. 90, 1680 (1986). (in Russian) [Sov. Phys. JETP 63, 986 (1986)]Google Scholar
  7. 7.
    S.D. Kunikeev, V.S. Senashenko, Pis’ma Zh. Tekh. Fiz. 14, 181 (1988). [Sov. Tech. Phys. Lett. 14, 786 (1988)]Google Scholar
  8. 8.
    A.L. Godunov, S.D. Kunikeev, N.V. Novikov, V.S. Senashenko, Zh. Eksp. Teor. Fiz. 96, 1638 (1989). [Sov. Phys. JETP 69, 927 (1989)]Google Scholar
  9. 9.
    A.R. Ashurov, D.A. Zubarev, A.M. Mukhamedzhanov, R. Yarmukhamedov, Yad. Fiz. 53, 151 (1991). (in Russian)Google Scholar
  10. 10.
    A.M. Mukhamedzhanov, Theor. Math. Phys. 62, 105 (1985). [in Russian]MathSciNetCrossRefGoogle Scholar
  11. 11.
    L.D. Blokhintsev, A.M. Mukhamedzhanov, A.N. Safronov, Fiz. Elem. Chast. At. Yadra 15, 1296 (1984). [Sov. J. Part. Nucl. 15, 580 (1984)]Google Scholar
  12. 12.
    A.M. Mukhamedzhanov, Phys. Rev. C84, 044616 (2011)ADSGoogle Scholar
  13. 13.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E.I. Dolinskii, A.M. Mukhamedzhanov, Yad. Fiz. 3, 252 (1966). [Sov. J. Nucl. Phys. 3, 180 (1966)]Google Scholar
  15. 15.
    G.V. Avakov, A.R. Ashurov, V.G. Levin, A.M. Mukhamedzhanov, J. Phys. A17, 1131 (1984)ADSGoogle Scholar
  16. 16.
    H. van Haeringen, J. Math. Phys. 17, 995 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    A. Nordsieck, Phys. Rev 93, 785 (1954)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L.S. Gradstein, I.M. Ryzhik, Tables of Integrals, Series, and Products (Translated from the Russian) (Academic Press, London, 1980)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cyclotron InstituteTexas A&M UniversityCollege StationUSA
  2. 2.Curtin Institute for Computation and Department of Physics and AstronomyCurtin UniversityPerthAustralia

Personalised recommendations