Few-Body Systems

, 59:49 | Cite as

Are the Chiral Based \(\bar{\varvec{K}}\varvec{N}\) Potentials Really Energy-Dependent?

Article
  • 12 Downloads

Abstract

It is shown, that the energy dependence of the chiral based \(\bar{K}N\) potentials, responsible for the occurrence of two poles in the \(I=0\) sector, is the consequence of applying the on-shell factorization introduced in Oset and Ramos (Nucl Phys A 635:99, 1998). When the dynamical equation is solved without this approximation, the T-matrix has only one pole in the energy region of the \(\Lambda (1405)\) resonance.

References

  1. 1.
    Y. Kamiya, K. Miyahara et al., Antikaon–nukleon interaction and \(\Lambda (1405)\) in chiral SU(3) dynamics. Nucl. Phys. A 954, 41 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    V.K. Magas, E. Oset, A. Ramos, Evidence for the two-pole structure of the \(\Lambda (1405)\) resonance. Phys. Rev. Lett. 95, 052301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Akaishi, T. Yamazaki et al., Single-pole nature of \(\Lambda (1405)\) and structure of \(K^-pp\). Nucl. Phys. A 835, 67 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    K. Moriya, R.A. Schumacher, CLAS collaboration, properties of \(\Lambda (1405)\) measured at CLAS. Nucl. Phys. A 835, 325 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    K. Moriya et al., Measurement of the \(\Sigma \pi \) photoproduction line shapes near the \(\Lambda (1405)\). Phys. Rev. C 87, 035206 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    H.Y. Lu et al., First observation of the \(\Lambda (1405)\) line shape in electroproduction. Phys. Rev. C 88, 045202 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    R.A. Schumacher, K. Moriya, Isospin decomposition of the photoproduced \(\Sigma \pi \) system near the \(\Lambda (1405)\). Nucl. Phys. A 914, 51 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    L. Roca, E. Oset, \(\Lambda (1405)\) poles obtained from \(\pi ^0\Sigma ^0\) photoproduction data. Phys. Rev. C 87, 055201 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M. Mai, U.-G. Meißner, Constrains on the chiral unitary \(\bar{K}N\) amplitude from \(\pi \Sigma K^+\) photopruduction data. Eur. Phys. J. A 51, 30 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Hassanvand, Y. Akaishi, T. Yamazaki, Clear indication of a strong \(I=0 \bar{K}N\) attraction in the \(\Lambda (1405)\)region from the CLAS photoproduction data. arXiv:1704.08571
  11. 11.
    A. Cieply, J. Smejkal, Separable potential model for \(K^-N\) interaction at low energies. Eur. Phys. J. A 43, 191 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Révai, N.V. Shevchenko, Isospin mixing effects in the low-energy \(\bar{K}N-\pi \Sigma \) interaction. Phys. Rev. C 79, 035202 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Ikeda, H. Kamano, T. Sato, Energy dependence of \(\bar{K}N\) interaction and resonance pole of strange dibaryons. Prog. Theor. Phys. 124, 533 (2010)ADSCrossRefMATHGoogle Scholar
  14. 14.
    N.V. Shevchenko, Three-body antikaon–nucleon systems. Few Body Syst. 58, 6 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Ikeda, T. Sato, Resonance energy of the \(\bar{K}NN-\pi YN\) system. Phys. Rev. C 79, 035201 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. Revai, Signature of the \(\Lambda (1405)\) resonance in neutron spectra from the \(K^{-}+d\) reaction. Few Body Syst. 54, 1865 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Ohnishi et al., Structure of the \(\Lambda (1405)\) and the \(K^-d\rightarrow \pi \Sigma n\) reaction. Phys. Rev. C 93, 025207 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Marri, S.Z. Kalantari, Coupled-channels Faddeev AGS calculation of \(K^-ppn\) and \(K^-ppp\) quasi-bound states. Eur. Phys. J. A 52, 282 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    E. Oset, A. Ramos, Non-perturbative chiral approach to \(s\)-wave \(\bar{K}N\) interactions. Nucl. Phys. A 635, 99 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    T. Hyodo, W. Weise, Effective \(\bar{K}N\) interaction based on chiral SU(3) dynamics. Phys. Rev. C 77, 035204 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    N. Kaiser, P.B. Siegel, W. Weise, Chiral dynamics and the low-energy kaon–nucleon interaction. Nucl. Phys. A 594, 325 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    J. Marton, M. Bazzi, SIDDHARTA results and implications of the results on antikaon–nucleon interaction. AIP Conf. Proc. 1735, 080014 (2016)CrossRefGoogle Scholar
  23. 23.
    U.-G. Meißner, U. Raha, A. Rusetsky, Kaon-nucleon scattering length from kaonic deuterium experiments. Eur. Phys. J. C 47, 473 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    V. Baru, E. Epelbaum, A. Rusetsky, The role of nucleon recoil in low-energy antikaon-deuteron scattering. Eur. Phys. J. A 42, 111 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MTA Wigner RCP, Inst. for Particle and Nuclear PhysicsBudapestHungary

Personalised recommendations