Advertisement

The inflammation–nutrition score supports the prognostic prediction of the TNM stage for colorectal cancer patients after curative resection

  • Shiki Fujino
  • Norikatsu MyoshiEmail author
  • Kazuhiro Saso
  • Msaru Sasaki
  • Satoshi Ishikawa
  • Yusuke Takahashi
  • Masayoshi Yasui
  • Masayuki Ohue
  • Taishi Hata
  • Chu Matsuda
  • Tsunekazu Mizushima
  • Masaki Mori
  • Yuichiro Doki
Original Article
  • 18 Downloads

Abstract

Purpose

Inflammation and the nutritional and immunologic status are known to be associated with the prognosis of malignant tumors. We aimed to examine inflammation–nutrition scores and predict the prognosis of colorectal cancer (CRC) patients by integrating nutritional and immunologic factors and tumor stage.

Methods

This study investigated 511 patients with CRC from 2007 to 2013: 380 in a training set (TS) and 131 in a validation set (VS). The Osaka Prognostic Score (OPS) used comprised 1 point each for C-reactive protein > 1.0 mg/dL, albumin (< 3.5 g/dL), and lymphocyte count < 1600. Patients were classified according to the total points. The modified Glasgow Prognostic Score and the Prognostic Nutritional Index were also examined. A nomogram for predicting the disease-free survival (DFS) and overall survival (OS) was constructed based on the OPS and TNM stage.

Results

In the TS, a high OPS and high TNM stage were significant predictors of the DFS and OS. The C-indexes of the OPS for the DFS and OS were higher than those of other reported scoring systems. The C-index of the nomogram for the DFS was 0.762 in the TS and 0.675 in the VS. The C-index of the nomogram for the OS was 0.805 in the TS and 0.743 in the VS.

Conclusion

Integrating the TNM stage and OPS accurately predicted the prognosis of patients with CRC.

Keywords

Colorectal cancer Nomogram Nutrition Inflammation Prognostic score 

Abbreviations

CRC

Colorectal cancer

OS

Overall survival

DFS

Disease-free survival

TNM stage

Tumor node metastasis stage

mGPS

Modified Glasgow Prognostic Score

PNI

Prognostic Nutritional Index

CRP

C-reactive protein

TLC

Total lymphocyte counts

OPS

Osaka Prognostic Score

TS

Training set

VS

Validation set

Notes

Acknowledgements

The authors would like to thank Ms. Aya Ito for special technical assistance and Dr Trish Reynolds, MBBS, FRACP, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This work was supported in part by a grant-in-aid for scientific research (C, 41040220, 17K16542) and a 38th Japan Medical Woman’s Association Academic Research Grant.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary material

595_2019_1861_MOESM1_ESM.docx (2.1 mb)
Supplementary file1 (DOCX 2143 kb)

References

  1. 1.
    Pan QX, Su ZJ, Zhang JH, Wang CR, Ke SY. A comparison of the prognostic value of preoperative inflammation-based scores and TNM stage in patients with gastric cancer. Onco Targets Ther. 2015;8:1375–85.  https://doi.org/10.2147/OTT.S82437.CrossRefGoogle Scholar
  2. 2.
    Takeuchi H, Kawanaka H, Fukuyama S, Kubo N, Hiroshige S, Yano T. Comparison of the prognostic values of preoperative inflammation-based parameters in patients with breast cancer. PLoS ONE. 2017;12(5):e0177137.  https://doi.org/10.1371/journal.pone.0177137.CrossRefGoogle Scholar
  3. 3.
    Suzuki Y, Okabayashi K, Hasegawa H, Tsuruta M, Shigeta K, Kondo T, et al. Comparison of preoperative inflammation-based prognostic scores in patients with colorectal cancer. Ann Surg. 2018;267(3):527–31.  https://doi.org/10.1097/SLA.0000000000002115.CrossRefGoogle Scholar
  4. 4.
    Proctor MJ, Morrison DS, Talwar D, Balmer SM, O'Reilly DS, Foulis AK, et al. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br J Cancer. 2011;104(4):726–34.  https://doi.org/10.1038/sj.bjc.6606087.CrossRefGoogle Scholar
  5. 5.
    Nozoe T, Kohno M, Iguchi T, Mori E, Maeda T, Matsukuma A, et al. The prognostic nutritional index can be a prognostic indicator in colorectal carcinoma. Surg Today. 2012;42(6):532–5.  https://doi.org/10.1007/s00595-011-0061-0.CrossRefGoogle Scholar
  6. 6.
    Park BK, Park JW, Han EC, Ryoo SB, Han SW, Kim TY, et al. Systemic inflammatory markers as prognostic factors in stage IIA colorectal cancer. J Surg Oncol. 2016;114(2):216–21.  https://doi.org/10.1002/jso.24299.CrossRefGoogle Scholar
  7. 7.
    Migita K, Takayama T, Saeki K, Matsumoto S, Wakatsuki K, Enomoto K, et al. The prognostic nutritional index predicts long-term outcomes of gastric cancer patients independent of tumor stage. Ann Surg Oncol. 2013;20(8):2647–54.  https://doi.org/10.1245/s10434-013-2926-5.CrossRefGoogle Scholar
  8. 8.
    Chang Y, An H, Xu L, Zhu Y, Yang Y, Lin Z, et al. Systemic inflammation score predicts postoperative prognosis of patients with clear-cell renal cell carcinoma. Br J Cancer. 2015;113(4):626–33.  https://doi.org/10.1038/bjc.2015.241.CrossRefGoogle Scholar
  9. 9.
    Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, Group EGW. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii1–9.  https://doi.org/10.1093/annonc/mdu260.CrossRefGoogle Scholar
  10. 10.
    Labianca R, Nordlinger B, Beretta GD, Mosconi S, Mandala M, Cervantes A, et al. Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):vi64–72.  https://doi.org/10.1093/annonc/mdt354.CrossRefGoogle Scholar
  11. 11.
    Watanabe T, Muro K, Ajioka Y, Hashiguchi Y, Ito Y, Saito Y, et al. Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol. 2018;23(1):1–34.  https://doi.org/10.1007/s10147-017-1101-6.CrossRefGoogle Scholar
  12. 12.
    Park JH, Watt DG, Roxburgh CS, Horgan PG, McMillan DC. Colorectal cancer, systemic inflammation, and outcome: staging the tumor and staging the host. Ann Surg. 2016;263(2):326–36.  https://doi.org/10.1097/SLA.0000000000001122.CrossRefGoogle Scholar
  13. 13.
    Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006;55(1):115–22.  https://doi.org/10.1136/gut.2004.047100.CrossRefGoogle Scholar
  14. 14.
    Yeung TM, Buskens C, Wang LM, Mortensen NJ, Bodmer WF. Myofibroblast activation in colorectal cancer lymph node metastases. Br J Cancer. 2013;108(10):2106–15.  https://doi.org/10.1038/bjc.2013.209.CrossRefGoogle Scholar
  15. 15.
    Blank CU, Haanen JB, Ribas A, Schumacher TN. CANCER IMMUNOLOGY. The "cancer immunogram". Science. 2016;352(6286):658–60.CrossRefGoogle Scholar
  16. 16.
    Miyoshi N, Ohue M, Yasui M, Noura S, Shingai T, Sugimura K, et al. Novel prognostic prediction models for patients with stage IV colorectal cancer after concurrent curative resection. ESMO Open. 2016;1(3):e000052.  https://doi.org/10.1136/esmoopen-2016-000052.CrossRefGoogle Scholar
  17. 17.
    Yang P, Qiu J, Li J, Wu D, Wan X, Lau WY, et al. Nomograms for pre- and postoperative prediction of long-term survival for patients who underwent hepatectomy for multiple hepatocellular carcinomas. Ann Surg. 2016;263(4):778–86.  https://doi.org/10.1097/SLA.0000000000001339.CrossRefGoogle Scholar
  18. 18.
    Fujino S, Miyoshi N, Ohue M, Yasui M, Sugimura K, Akita H, et al. A nomogram for predicting lymph node metastasis in submucosal colorectal cancer. Int Surg. 2017;102(102–8):16.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shiki Fujino
    • 1
  • Norikatsu Myoshi
    • 1
    • 3
    Email author
  • Kazuhiro Saso
    • 1
  • Msaru Sasaki
    • 1
  • Satoshi Ishikawa
    • 1
  • Yusuke Takahashi
    • 2
  • Masayoshi Yasui
    • 2
  • Masayuki Ohue
    • 2
  • Taishi Hata
    • 1
  • Chu Matsuda
    • 1
  • Tsunekazu Mizushima
    • 1
  • Masaki Mori
    • 4
  • Yuichiro Doki
    • 1
  1. 1.Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Department of SurgeryOsaka International Cancer InstituteOsakaJapan
  3. 3.Innovative Oncology Research and Regenerative MedicineOsaka International Cancer InstituteOsakaJapan
  4. 4.Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations