Advertisement

Surgery Today

, Volume 49, Issue 10, pp 828–835 | Cite as

A comparison between 2- and 3-dimensional approaches to solid component measurement as radiological criteria for sublobar resection in lung adenocarcinoma ≤ 2 cm in size

  • Yukihiro YoshidaEmail author
  • Toshiki Manaka
  • Jun-ichi Nitadori
  • Aya Shinozaki-Ushiku
  • Takehito Doke
  • Toki Saito
  • Jiro Sato
  • Tempei Miyaji
  • Takuhiro Yamaguchi
  • Hiroshi Oyama
  • Masashi Fukayama
  • Yoshikazu Nakajima
  • Jun Nakajima
Original Article
  • 96 Downloads

Abstract

Purpose

We compared three-dimensional (3D) and two-dimensional (2D) measurements of the solid component to determine radiological criteria for sublobar resection of lung adenocarcinoma ≤ 2 cm in size.

Methods

We included 233 surgical cases. The maximum size of the solid component for 3D measurement was calculated by delineating the solid component on successive axial images and reconstructing the 3D surface model.

Results

The predictive performance for adenocarcinoma in situ (n = 43) and minimally invasive adenocarcinoma (n = 77) were equivalent to areas under the curve of 0.871 and 0.857 for 2D and 3D measurements (p = 0.229), respectively. A solid component of 5 mm had a prognostic impact on both measurements ( ≤ 5 mm versus > 5 mm; p = 0.003 for 2D and p = 0.002 for 3D, log-rank test). Survival rates at 5 years were 94.7–96.9% following lobectomy and sublobar resection among patients with a solid component ≤ 5 mm in size. Sublobar resection resulted in worse survival rates, with declines at 5 years of 15.8% on 2D and 11.5% on 3D measurements, than lobectomy in patients with a solid component > 5 mm in size.

Conclusions

A solid component ≤ 5 mm in size is an appropriate criterion for sublobar resection for both measurements. In addition, 2D measurement is justified because of its simple implementation.

Keywords

Adenocarcinoma Computed tomography Pathology Solid component 

Notes

Acknowledgments

We would like to thank Editage (www.editage.jp) for the English language editing.

Funding

This work was supported by the Japan Surgical Society [Young Researcher Award].

Compliance with ethical standards

Conflict of interest

None declared.

Supplementary material

595_2019_1806_MOESM1_ESM.pdf (24 kb)
Supplementary file1 (PDF 23 kb)
595_2019_1806_MOESM2_ESM.pdf (27 kb)
Supplementary file2 (PDF 27 kb)
595_2019_1806_MOESM3_ESM.pdf (5 kb)
Supplementary file3 (PDF 4 kb)
595_2019_1806_MOESM4_ESM.pdf (113 kb)
Supplementary file4 (PDF 113 kb)

References

  1. 1.
    Ginsberg RJ, Rubinstein LV, Lung Cancer Study Group. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Ann Thorac Surg. 1995;60:615-622.Google Scholar
  2. 2.
    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. 1st ed. Lyon: International Agency for Research on Cancer; 2015.Google Scholar
  4. 4.
    Asamura H. Role of limited sublobar resection for early-stage lung cancer: steady progress. J Clin Oncol. 2014;32:2403–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Travis WD, Asamura H, Bankier AA, Beasley MB, Detterbeck F, Flieder DB et al. The IASLC Lung Cancer Staging Project: Proposals for Coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming Eighth Edition of the TNM Classification of Lung Cancer. J Thorac Oncol. 2016;11:1204–1223.Google Scholar
  6. 6.
    Rami-Porta R, Bolejack V, Crowley J, Ball D, Kim J, Lyons G et al. The IASLC Lung Cancer Staging Project: Proposals for the Revisions of the T descriptors in the forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2015;10:990–1003.Google Scholar
  7. 7.
    Yoshida Y, Nitadori JI, Shinozaki-Ushiku A, Sato J, Miyaji T, Yamaguchi T, et al. Micropapillary histological subtype in lung adenocarcinoma of 2 cm or less: impact on recurrence and clinical predictors. Gen Thorac Cardiovasc Surg. 2017;65:273–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011;6:751–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ. Biophoton Int. 2004;11:36–42.Google Scholar
  10. 10.
    Lee KH, Goo JM, Park SJ, Wi JY, Chung DH, Go H, et al. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol. 2014;9:74–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Delaunay BN. [On the empty sphere]. Bull Acad Sci URSS. 1934;6:793–800.Google Scholar
  12. 12.
    Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Neither maximum tumor size nor solid component size is prognostic in part-solid lung cancer: impact of tumor size should be applied exclusively to solid lung cancer. Ann Thorac Surg. 2016;102:407–15.CrossRefPubMedGoogle Scholar
  13. 13.
    Henzler T, Goldstraw P, Wenz F, Pirker R, Weder W, Apfaltrer P, et al. Perspectives of novel imaging techniques for staging, therapy response assessment, and monitoring of surveillance in lung cancer: Summary of the Dresden 2013 Post WCLC-IASLC State-of-the-Art Imaging Workshop. J Thorac Oncol. 2015;10:237–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yukihiro Yoshida
    • 1
    Email author
  • Toshiki Manaka
    • 2
  • Jun-ichi Nitadori
    • 1
  • Aya Shinozaki-Ushiku
    • 3
  • Takehito Doke
    • 2
  • Toki Saito
    • 4
  • Jiro Sato
    • 5
  • Tempei Miyaji
    • 6
  • Takuhiro Yamaguchi
    • 6
  • Hiroshi Oyama
    • 4
  • Masashi Fukayama
    • 3
  • Yoshikazu Nakajima
    • 2
  • Jun Nakajima
    • 1
  1. 1.Department of Thoracic SurgeryThe University of Tokyo Graduate School of MedicineTokyoJapan
  2. 2.Department of BioengineeringThe University of Tokyo Graduate School of EngineeringTokyoJapan
  3. 3.Department of PathologyThe University of Tokyo Graduate School of MedicineTokyoJapan
  4. 4.Department of Clinical Information EngineeringThe University of Tokyo Graduate School of MedicineTokyoJapan
  5. 5.Department of RadiologyThe University of Tokyo Graduate School of MedicineTokyoJapan
  6. 6.Department of Clinical Trial Data ManagementThe University of Tokyo Graduate School of MedicineTokyoJapan

Personalised recommendations