Advertisement

Lung function measurements in the prediabetes stage: data from the ILERVAS Project

  • Enric Sánchez
  • Liliana Gutiérrez-Carrasquilla
  • Ferrán Barbé
  • Àngels Betriu
  • Carolina López-Cano
  • Anna Michela Gaeta
  • Francesc Purroy
  • Reinald Pamplona
  • Marta Ortega
  • Elvira Fernández
  • Cristina Hernández
  • Albert LecubeEmail author
  • Rafael Simó
  • ILERVAS Project
Original Article

Abstract

Aims

Patients with type 2 diabetes have been considered a susceptible group for pulmonary dysfunction. Our aim was to assess pulmonary function on the prediabetes stage.

Methods

Pulmonary function was assessed in 4,459 non-diabetic subjects, aged between 45 and 70 years, without cardiovascular disease or chronic pulmonary obstructive disease from the ongoing study ILERVAS. A “restrictive spirometric pattern”, an “abnormal FEV1” and an “obstructive ventilatory defect” were assessed. Prediabetes was defined by glycosylated hemoglobin (HbA1c) between 5.7 and 6.4% according to the American Diabetes Association criteria.

Results

Population was composed of 52.1% women, aged 57 [53;63] years, a BMI of 28.6 [25.8;31.8] kg/m2, and with a prevalence of prediabetes of 29.9% (n = 1392). Subjects with prediabetes had lower forced vital capacity (FVC: 93 [82;105] vs. 96 [84;106], p < 0.001) and lower forced expired volume in the first second (FEV1: 94 [82;107] vs. 96 [84;108], p = 0.011), as well as a higher percentage of the restrictive spirometric pattern (16.5% vs. 13.6%, p = 0.015) and FEV1 < 80% (20.3% vs. 17.2%, p = 0.017) compared to non-prediabetes group. In the prediabetes group, HbA1c was negatively correlated with both pulmonary parameters (FVC: r = − 0.113, p < 0.001; FEV1: r = − 0.079, p = 0.003). The multivariable logistic regression model in the whole population showed that there was a significant and independent association between HbA1c with both restrictive spirometric pattern [OR = 1.42 (1.10–1.83), p = 0.008] and FEV1 < 80% [OR = 1.50 (1.19–1.90), p = 0.001].

Conclusions

The deleterious effect of type 2 diabetes on pulmonary function appears to be initiated in prediabetes, and it is related to metabolic control.

Trial registration ClinicalTrials.gov

NCT03228459.

Keywords

Prediabetes Pulmonary dysfunction Forced vital capacity Forced expiratory volume in the first second Restrictive spirometric pattern 

Notes

Acknowledgements

This work was supported by grants from the Lleida Provincial Council, Autonomous Government of Catalonia (2017SGR696 and SLT0021600250), Instituto de Salud Carlos III (Fondo de Investigación Sanitaria PI12/00803 and PI15/00260), and European Union (European Regional Development Fund, Fondo Europeo de Desarrollo Regional, “Una manera de hacer Europa”). CIBER de Diabetes y Enfermedades Metabólicas Asociadas and CIBER de Enfermedades Respiratorias are initiatives of the Instituto de Salud Carlos III. The authors would also like to thank Fundació Renal Jaume Arnó, IRBLleida (Eva Castro, Virtudes María, Marta Elias, Teresa Vidal, Mª del Valle Peña, Cristina Dominguez, Noemi Nova, Alba Prunera, Núria Sans, Meritxell Soria), and the Primary Care teams from Lleida for recruiting subjects and their efforts in the accurate development of the ILERVAS project.

Compliance with ethical standards

Conflict of interest

All author(s) declare that they have no conflict of interest.

Ethical approval

The protocol was approved by the Arnau de Vilanova University Hospital ethics committee (CEIC-1410). Additionally, the study was conducted according to the ethical guidelines of the Helsinki Declaration and Spanish legislation regarding the protection of personal information was also followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

592_2019_1333_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 KB)
592_2019_1333_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 KB)

References

  1. 1.
    Lecube A, Simó R, Pallayova M et al (2017) Pulmonary function and sleep breathing: two new targets for type 2 diabetes. Endocr Rev 38:550–573CrossRefGoogle Scholar
  2. 2.
    van den Borst B, Gosker HR, Zeegers MP et al (2010) Pulmonary function in diabetes. A metaanalysis. Chest 138:393–406CrossRefGoogle Scholar
  3. 3.
    Klein OL, Krishnan JA, Glick S et al (2010) Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med 27:977–987CrossRefGoogle Scholar
  4. 4.
    Davis TM, Knuiman M, Kendall P et al (2000) Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 50:153–159CrossRefGoogle Scholar
  5. 5.
    Walter RE, Beiser A, Givelber RJ et al (2003) Association between glycemic state and lung function: the Framingham Heart Study. Am J Respir Crit Care Med 167:911–916CrossRefGoogle Scholar
  6. 6.
    Yeh HC, Punjabi NM, Wang NY et al (2008) Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetes Care 31:741–746CrossRefGoogle Scholar
  7. 7.
    Kodolova IM, Lysenko LV, Saltykov BB (1982) Changes in the lungs in diabetes mellitus. Arkh Patol 44:35–40Google Scholar
  8. 8.
    Chance WW, Rhee C, Yilmaz C et al (2008) Diminished alveolar microvascular reserves in type 2 diabetes reflect systemic microangiopathy. Diabetes Care 31:1596–1601CrossRefGoogle Scholar
  9. 9.
    Sánchez E, Lecube A, Betriu À et al (2018) Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: the ILERVAS project. Diabetes Metab.  https://doi.org/10.1016/j.diabet.2018.04.002 Google Scholar
  10. 10.
    Bellmunt MJ, Portero M, Pamplona R et al (1995) Evidence for the Maillard reaction in rat lung collagen and its relationship with solubility and age. Biochim Biophys Acta 1272:53–60CrossRefGoogle Scholar
  11. 11.
    Lange P, Groth S, Mortensen J et al (1990) Diabetes mellitus and ventilator capacity: a five year follow-up study. Eur Respir J 3:288–292Google Scholar
  12. 12.
    Yamane T, Yokoyama A, Kitahara Y et al (2013) Cross-sectional and prospective study of the association between lung function and prediabetes. BMJ Open 3:e002179CrossRefGoogle Scholar
  13. 13.
    Li Y, Saito M, Tobimatsu S et al (2013) Prediabetes and impaired lung function in asymptomatic adults. Diabetes Res Clin Pract 100:e51–e54CrossRefGoogle Scholar
  14. 14.
    Menke A, Casagrande S, Geiss L et al (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314:1021–1029CrossRefGoogle Scholar
  15. 15.
    Huang Y, Cai X, Mai W et al (2016) Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 355:i5953CrossRefGoogle Scholar
  16. 16.
    Markus M, Ittermann T, Baumeister S et al (2018) Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population. Nutr Metab Cardiovasc Dis 28:234–242CrossRefGoogle Scholar
  17. 17.
    Diabetes Prevention Program Research Group (2007) The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet Med 24:137–144CrossRefGoogle Scholar
  18. 18.
    Betriu À, Farràs C, Abajo M et al (2016) Randomised intervention study to assess the prevalence of subclinical vascular disease and hidden kidney disease and its impact on morbidity and mortality: the ILERVAS project. Nefrologia 36:389–396CrossRefGoogle Scholar
  19. 19.
    Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report (1998) National Institutes of Health. Obes Res 6(Suppl 2):51S–209SGoogle Scholar
  20. 20.
    American Diabetes Association (2017) Classification and diagnosis of diabetes. Section 2. In Standards of Medical Care in Diabetes—2017. Diabetes Care 40:S11–S24CrossRefGoogle Scholar
  21. 21.
    Lenters-Westra E, Slingerland RJ (2014) Three of 7 hemoglobin A1c point-of-care instruments do not meet generally accepted analytical performance criteria. Clin Chem 60:1062–1072CrossRefGoogle Scholar
  22. 22.
    Miller M, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338CrossRefGoogle Scholar
  23. 23.
    Backman H, Eriksson B, Hedman L et al (2016) Restrictive spirometric pattern in the general adult population: methods of defining the condition and consequences on prevalence. Respir Med 120:116–123CrossRefGoogle Scholar
  24. 24.
    Vogelmeier CF, Criner GJ, Martinez FJ et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 195:557–582CrossRefGoogle Scholar
  25. 25.
    Wasserman DH, Wang TJ, Brown NJ (2018) The vasculature in prediabetes. Circ Res 122:1135–1150CrossRefGoogle Scholar
  26. 26.
    Gateva A, Assyov Y, Tsakova A et al (2018) Classical (adiponectin, leptin, resistin) and new (chemerin, vaspin, omentin) adipocytokines in patients with prediabetes. Horm Mol Biol Clin Investig.  https://doi.org/10.1515/hmbci-2017-0031 Google Scholar
  27. 27.
    Di Pino A, Urbano F, Zagami RM et al (2016) Low endogenous secretory receptor for advanced glycation end-products levels are associated with inflammation and carotid atherosclerosis in prediabetes. J Clin Endocrinol Metab 101:1701–1709CrossRefGoogle Scholar
  28. 28.
    Schünemann HJ, Dorn J, Grant BJ et al (2000) Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 118:656–664CrossRefGoogle Scholar
  29. 29.
    Davis WA, Knuiman M, Kendall P et al (2004) Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care 27:752–757CrossRefGoogle Scholar
  30. 30.
    du Bois RM, Weycker D, Albera C et al (2011) Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med 184:1382–1389CrossRefGoogle Scholar
  31. 31.
    Lazarus R, Sparrow D, Weiss ST (1998) Impaired ventilatory function and elevated insulin levels in nondiabetic males: the Normative Aging Study. Eur Respir J 12:635–640CrossRefGoogle Scholar
  32. 32.
    Lawlor DA, Ebrahim S, Smith GD (2004) Associations of measures of lung function with insulin resistance and Type 2 diabetes: findings from the British Women’s Heart and Health Study. Diabetologia 47:195–203CrossRefGoogle Scholar
  33. 33.
    Lecube A, Sampol G, Muñoz X et al (2010) Insulin resistance is related to impaired lung function in morbidly obese women: a case-control study. Diabetes Metab Res Rev 26:639–645CrossRefGoogle Scholar
  34. 34.
    Petersen KF, Dufour S, Befroy D et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefGoogle Scholar
  35. 35.
    Lazarus R, Sparrow D, Weiss ST (1997) Handgrip strength and insulin levels: cross-sectional and prospective associations in the Normative Aging Study. Metabolism 46:1266–1269CrossRefGoogle Scholar
  36. 36.
    Lim SY, Rhee EJ, Sung KC (2010) Metabolic syndrome, insulin resistance and systemic inflammation as risk factors for reduced lung function in korean nonsmoking males. J Korean Med Sci 25:1480–1486CrossRefGoogle Scholar
  37. 37.
    Singh S, Bodas M, Bhatraju NK et al (2016) Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol 310:L837–L845CrossRefGoogle Scholar
  38. 38.
    Singh S, Prakash YS, Linneberg A et al (2013) Insulin and the lung: connecting asthma and metabolic syndrome. J Allergy (Cairo) 2013:627384Google Scholar
  39. 39.
    Thuesen BH, Husemoen LLN, Hersoug LG et al (2009) Insulin resistance as a predictor of incident asthma-like symptoms in adults. Clin Exp Allergy 39:700–707CrossRefGoogle Scholar
  40. 40.
    Ruttenstock E, Doi T, Dingemann J et al (2010) Insulin receptor is downregulated in the nitrofen-induced hypoplastic lung and the synthesis of surfactant may be regulated by IR. J Pediatr Surg 45:948–952CrossRefGoogle Scholar
  41. 41.
    López-Cano C, Lecube A, García-Ramírez M et al (2017) Serum surfactant protein D as a biomarker for measuring lung involvement in obese type 2 diabetic patients. J Clin Endocrinol Metab 102:4109–4116CrossRefGoogle Scholar
  42. 42.
    Kopf S, Groener JB, Kender Z et al (2018) Breathlessness and restrictive lung disease: an important diabetes-related feature in patients with type 2 diabetes. Respiration 96:29–40CrossRefGoogle Scholar
  43. 43.
    Ledesma AV, Castro DS, Vargas GV et al (2018) Glycemic disorders and their impact on lung function. Cross-sectional study. Med Clin (Barc).  https://doi.org/10.1016/j.medcli.2018.08.003 Google Scholar
  44. 44.
    Kim CH, Kim HK, Kim EH et al (2015) Association of restrictive ventilatory dysfunction with the development of prediabetes and type 2 diabetes in Koreans. Acta Diabetol 52:357–363CrossRefGoogle Scholar
  45. 45.
    Kinney GL, Baker EH, Klein OL et al (2016) Pulmonary predictors of incident diabetes in smokers. Chronic Obstr Pulm Dis 3:739–747Google Scholar
  46. 46.
    Soriguer F, Goday A, Bosch-Comas A et al (2012) Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@betes study. Diabetologia 55:88–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  • Enric Sánchez
    • 1
  • Liliana Gutiérrez-Carrasquilla
    • 1
  • Ferrán Barbé
    • 2
    • 3
  • Àngels Betriu
    • 4
  • Carolina López-Cano
    • 1
  • Anna Michela Gaeta
    • 2
  • Francesc Purroy
    • 5
  • Reinald Pamplona
    • 6
  • Marta Ortega
    • 7
  • Elvira Fernández
    • 4
  • Cristina Hernández
    • 8
    • 9
  • Albert Lecube
    • 1
    • 9
    Email author
  • Rafael Simó
    • 8
    • 9
  • ILERVAS Project
  1. 1.Endocrinology and Nutrition Department, Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleidaUniversity Hospital Arnau de Vilanova, University of LleidaLleidaSpain
  2. 2.Respiratory Department, Translational Research in Respiratory Medicine, IRBLleidaUniversity Hospital Arnau de Vilanova-Santa María, University of LleidaLleidaSpain
  3. 3.Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos III (ISCIII)MadridSpain
  4. 4.Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA V&R), Vascular and Renal Translational Research Group. IRBLleidaUniversity Hospital Arnau de Vilanova, University of LleidaLleidaSpain
  5. 5.Stroke Unit, Clinical Neurosciences Group, IRBLleidaUniversity Hospital Arnau de Vilanova, University of LleidaLleidaSpain
  6. 6.Department of Experimental Medicine, IRBLleidaUniversity of LleidaLleidaSpain
  7. 7.Primary Health Care UnitLleidaSpain
  8. 8.Endocrinology and Nutrition Department, Hospital Universitari Vall d’Hebron, Diabetes and Metabolism Research Unit, Vall d’Hebron Institut de Recerca (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
  9. 9.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos III (ISCIII)MadridSpain

Personalised recommendations