Acta Diabetologica

, Volume 56, Issue 5, pp 581–592 | Cite as

Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition

  • Sibei Tao
  • Lingzhi Li
  • Ling Li
  • Yuan Liu
  • Qian Ren
  • Min Shi
  • Jing Liu
  • Jing Jiang
  • Huichao Ma
  • Zhuo Huang
  • Zijing Xia
  • Jing Pan
  • Tiantian Wei
  • Yan Wang
  • Peiyun Li
  • Tian Lan
  • Xi Tang
  • Xiaoxi Zeng
  • Song Lei
  • Huairong Tang
  • Liang MaEmail author
  • Ping FuEmail author
Original Article
Part of the following topical collections:
  1. Gut Microbiome and Metabolic Disorders



Type 2 diabetes mellitus (T2DM) has a rising prevalence and gut microbiota involvement is increasingly recognized. Diabetic nephropathy (DN) is a major complication of T2DM. The aim of the study was to understand the gut–kidney axis by an analysis of gut microbiota composition among biopsy-proven DN, T2DM without kidney disease, and healthy control.


Fecal samples were collected from 14 DNs, 14 age/gender-matched T2DMs without renal diseases (DM), 14 age and gender-matched healthy controls (HC) and household contacts (HH) of DM group. The microbiota composition was analyzed by 16sRNA microbial profiling approach.


Substantial differences were found in the richness of gut microbiota and the variation of bacteria population in DM compared to HC, and DN compared to DM, respectively. DM could be accurately distinguished from age/gender-matched healthy controls by the variable of genus g_Prevotella_9 (AUC = 0.9), and DN patients could be accurately distinguished from age/gender-matched DM by the variables of two genera (g_Escherichia-Shigella and g_Prevotella_9, AUC = 0.86). The microbiota composition of HH group was close to that of HC group, and was different from DM group. Under the same diet, DM could be more accurately detected by the same genus (g_Prevotella_9, AUC = 0.92).


Gut microbiota composition was explored to be related to the occurrence of biopsy-proven DN from DM. DM could be distinguished from HC by detecting g_Prevotella_9 level in feces, while DN was different from DM by the variables of g_Escherichia-Shigella and g_Prevotella_9, which potentially contributed to the physiopathological diagnosis of DN from DM.


Gut–kidney axis Gut microbiota Diabetic nephropathy Type 2 diabetes mellitus 



The study is supported by National Key Research & Development Program of China (2016YFC1305403), National Natural Science Foundation of China (81700634) and International cooperation project (2016HH0069) funded by Science and Technology Department of Sichuan Province.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was approved by Biomedical Ethics Committee of West China Hospital of Sichuan University (No. 2016-273). All the procedures followed the Declaration of Helsinki principles.

Informed consent

All participants provided written informed consent before enrolment in the study.

Supplementary material

592_2019_1316_MOESM1_ESM.doc (166 kb)
Supplementary material 1 (DOC 166 KB)


  1. 1.
    Demmer RT, Zuk AM, Rosenbaum M, Desvarieux M (2013) Prevalence of diagnosed and undiagnosed type 2 diabetes mellitus among US adolescents: results from the continuous NHANES, 1999–2010. Am J Epidemiol 178(7):1106–1113Google Scholar
  2. 2.
    Ma RC, Lin X, Jia W (2014) Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol 2(12):980–991Google Scholar
  3. 3.
    Pitts-Tucker T (2012) Asian and Afro-Caribbean Britons have double the risk of type 2 diabetes. Br Med J 345:e6135Google Scholar
  4. 4.
    Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C (2013) Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159(8):543–551Google Scholar
  5. 5.
    Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103Google Scholar
  6. 6.
    Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60Google Scholar
  7. 7.
    Zhang X, Shen D, Fang Z et al (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8(8):e71108Google Scholar
  8. 8.
    de Vos WM, Nieuwdorp M (2013) Genomics. A gut prediction. Nature 498(7452):48–49Google Scholar
  9. 9.
    Lau E, Carvalho D, Pina-Vaz C, Barbosa JA, Freitas P (2015) Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones 14(3):358–369Google Scholar
  10. 10.
    Barsoum RS (2006) Chronic kidney disease in the developing world. N Engl J Med 354(10):997–999Google Scholar
  11. 11.
    Du P, Fan B, Han H et al (2013) NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 84(2):265–276Google Scholar
  12. 12.
    Zhang L, Long J, Jiang W et al (2016) Trends in chronic kidney disease in China. N Engl J Med 375(9):905–906Google Scholar
  13. 13.
    de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J (2011) Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305(24):2532–2539Google Scholar
  14. 14.
    Afkarian M, Sachs MC, Kestenbaum B et al (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24(2):302–308Google Scholar
  15. 15.
    Fineberg D, Jandeleit-Dahm KA, Cooper ME (2013) Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 9(12):713–723Google Scholar
  16. 16.
    Li L, Ma L, Fu P (2017) Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des Dev Ther 11:3531–3542Google Scholar
  17. 17.
    Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25(4):657–670Google Scholar
  18. 18.
    Cai L, Wu H, Li D, Zhou K, Zou F (2015) Type 2 diabetes biomarkers of human gut microbiota selected via iterative sure independent screening method. PLoS One 10(10):e0140827Google Scholar
  19. 19.
    Guo Z, Zhang J, Wang Z et al (2016) Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 6:20602Google Scholar
  20. 20.
    Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315Google Scholar
  21. 21.
    Levey AS, de Jong PE, Coresh J et al (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80(1):17–28Google Scholar
  22. 22.
    Bakris GL, Agarwal R, Chan JC et al (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314(9):884–894Google Scholar
  23. 23.
    Brenner D, Hiergeist A, Adis C et al (2018) The fecal microbiome of ALS patients. Neurobiol Aging 61:132–137Google Scholar
  24. 24.
    Hiergeist A, Reischl U, Gessner A (2016) Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol 306(5):334–342Google Scholar
  25. 25.
    Mcardle BH, Anderson MJ (2011) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297Google Scholar
  26. 26.
    Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci USA 103(51):19430–19435Google Scholar
  27. 27.
    Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23(4):473–480Google Scholar
  28. 28.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273Google Scholar
  29. 29.
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904Google Scholar
  30. 30.
    Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266Google Scholar
  31. 31.
    De Angelis M, Montemurno E, Piccolo M et al (2014) Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 9(6):e99006Google Scholar
  32. 32.
    Jiang S, Xie S, Lv D et al (2017) Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep 7(1):2870Google Scholar
  33. 33.
    Poesen R, Windey K, Neven E et al (2016) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27(5):1389–1399Google Scholar
  34. 34.
    Nicholson JK, Holmes E, Kinross J et al (2012) Host–gut microbiota metabolic interactions. Science 336(6086):1262–1267Google Scholar
  35. 35.
    Chen T, Zhang X, Long Y et al (2012) The association of plasma free amino acids with liver enzymes in Type 2 diabetic patients. J Endocrinol Investig 35(8):772–775Google Scholar
  36. 36.
    Li M, Wang X, Aa J et al (2013) GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy. Am J Physiol Renal Physiol 304(11):F1317–F1324Google Scholar
  37. 37.
    Nakamura H, Jinzu H, Nagao K et al (2014) Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes 4:e133Google Scholar
  38. 38.
    Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798Google Scholar
  39. 39.
    Vitali B, Ndagijimana M, Cruciani F et al (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10:4Google Scholar
  40. 40.
    Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9(5):397–403Google Scholar
  41. 41.
    Andrade-Oliveira V, Amano MT, Correa-Costa M et al (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888Google Scholar
  42. 42.
    Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237Google Scholar
  43. 43.
    Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450Google Scholar
  44. 44.
    Finegold SM, Dowd SE, Gontcharova V et al (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453Google Scholar
  45. 45.
    Rizzatti G, Lopetuso LR, Gibiino G et al (2017) Proteobacteria: a common factor in human diseases. Biomed Res Int 2017(9):1–7Google Scholar
  46. 46.
    Wassenaar TM, Zimmermann K (2018) Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol 8(3):63–69Google Scholar
  47. 47.
    Carrero JJ, Stenvinkel P (2009) Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol 4(Suppl 1):S49–S55Google Scholar
  48. 48.
    Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4):822–880Google Scholar
  49. 49.
    Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63(3):223–234Google Scholar
  50. 50.
    Liu J (2014) Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J Gastroenterol 20(40):14672–14685Google Scholar
  51. 51.
    Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, Ardalan M, Zununi Vahed S (2017) The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharmacother 93:412–419Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  • Sibei Tao
    • 1
  • Lingzhi Li
    • 1
  • Ling Li
    • 1
  • Yuan Liu
    • 2
  • Qian Ren
    • 1
  • Min Shi
    • 1
  • Jing Liu
    • 1
  • Jing Jiang
    • 1
  • Huichao Ma
    • 1
  • Zhuo Huang
    • 1
  • Zijing Xia
    • 1
  • Jing Pan
    • 1
  • Tiantian Wei
    • 1
  • Yan Wang
    • 1
  • Peiyun Li
    • 1
  • Tian Lan
    • 1
  • Xi Tang
    • 1
  • Xiaoxi Zeng
    • 3
  • Song Lei
    • 4
  • Huairong Tang
    • 2
  • Liang Ma
    • 1
    • 5
    Email author
  • Ping Fu
    • 1
    Email author
  1. 1.Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
  2. 2.Chinese Health Service Management DepartmentWest China Hospital of Sichuan UniversityChengduChina
  3. 3.West China Biomedical Big Data CenterSichuan UniversityChengduChina
  4. 4.Department of PathologyWest China Hospital of Sichuan UniversityChengduChina
  5. 5.Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney DiseaseBeijingChina

Personalised recommendations