Advertisement

Wave changes in intraoperative transcranial motor-evoked potentials during posterior decompression and dekyphotic corrective fusion with instrumentation for thoracic ossification of the posterior longitudinal ligament

  • Kei Ando
  • Kazuyoshi Kobayashi
  • Masaaki Machino
  • Kyotaro Ota
  • Masayoshi Morozumi
  • Satoshi Tanaka
  • Naoki Ishiguro
  • Shiro ImagamaEmail author
Original Article • SPINE - CERVICAL
  • 55 Downloads

Abstract

Background

A prospective clinical study of amplitudes of intraoperative transcranial motor-evoked potentials (TcMEPs) was performed in patients undergoing surgery for the posterior longitudinal ligament of thoracic spine (T-OPLL).

Objective

To investigate intraoperative TcMEPs during posterior decompression and dekyphotic corrective fusion with instrumentation for T-OPLL.

Methods

The subjects were 33 patients with an average age of 48 years at surgery who underwent posterior decompression and fusion with instrumentation under intraoperative TcMEP monitoring. Age, gender, BMI, modified McCormick scale, prone and supine position test (PST), operative time, estimated blood loss, and Japanese Orthopaedic Association (JOA) score were recorded. Rates of successful appearance of TcMEPs, factors related to successful appearance, intraoperative amplitude changes, procedures related to amplitude deterioration, recovery of amplitude, procedures related to recovery, and postoperative paralysis were also investigated.

Results

The rate of appearance was highest from the abductor hallucis (AH) (83.3%) compared with other muscles. There were 24 cases with amplitude deterioration: during exposure in 6, screwing in 2, and decompression in 16. No deterioration occurred during rod placement. There were 13 (39%) with postoperative motor deficits. Significantly lower rates of amplitude appearance occurred in cases with BMI, positive PST, modified McCormick scale IV, and preoperative JOA score.

Conclusions

AH muscles were particularly useful for functional assessment of corticospinal conduction. High BMI, positive PST, modified McCormick scale IV, and low preoperative JOA score were associated with low rates of amplitude appearance. Amplitude deteriorations occurred throughout surgery, except during rod placement, and speedy rigid rod placement is important.

Keywords

Wave change Intraoperative transcranial motor-evoked potentials Ossification of the posterior longitudinal ligament Postoperative motor deficit 

Notes

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

References

  1. 1.
    Tomita K, Kawahara N, Baba H, Kikuchi Y, Nishimura H (1990) Circumspinal decompression for thoracic myelopathy due to combined ossification of the posterior longitudinal ligament and ligamentum flavum. Spine (Phila Pa 1976) 15:1114–1120CrossRefGoogle Scholar
  2. 2.
    Tsuzuki N, Hirabayashi S, Abe R, Saiki K (2001) Staged spinal cord decompression through posterior approach for thoracic myelopathy caused by ossification of posterior longitudinal ligament. Spine (Phila Pa 1976) 26:1623–1630CrossRefGoogle Scholar
  3. 3.
    Yonenobu K, Korkusuz F, Hosono N, Ebara S, Ono K (1990) Lateral rhachotomy for thoracic spinal lesions. Spine (Phila Pa 1976) 15:1121–1125CrossRefGoogle Scholar
  4. 4.
    Matsuyama Y, Sakai Y, Katayama Y, Imagama S, Ito Z, Wakao N, Yukawa Y, Ito K, Kamiya M, Kanemura T, Sato K, Ishiguro N (2009) Indirect posterior decompression with corrective fusion for ossification of the posterior longitudinal ligament of the thoracic spine: is it possible to predict the surgical results? Eur Spine J 18:943–948.  https://doi.org/10.1007/s00586-009-0956-2 CrossRefGoogle Scholar
  5. 5.
    Matsuyama Y, Yoshihara H, Tsuji T, Sakai Y, Yukawa Y, Nakamura H, Ito K, Ishiguro N (2005) Surgical outcome of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine: implication of the type of ossification and surgical options. J Spinal Disord Tech 18:492–497CrossRefGoogle Scholar
  6. 6.
    Yamazaki M, Koda M, Okawa A, Aiba A (2006) Transient paraparesis after laminectomy for thoracic ossification of the posterior longitudinal ligament and ossification of the ligamentum flavum. Spinal Cord 44:130–134.  https://doi.org/10.1038/sj.sc.3101807 CrossRefGoogle Scholar
  7. 7.
    Yamazaki M, Okawa A, Koda M, Goto S, Minami S, Moriya H (2005) Transient paraparesis after laminectomy for thoracic myelopathy due to ossification of the posterior longitudinal ligament: a case report. Spine (Phila Pa 1976) 30:E343–E346CrossRefGoogle Scholar
  8. 8.
    Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ (2004) Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 86-A:1248–1253CrossRefGoogle Scholar
  9. 9.
    Kelleher MO, Tan G, Sarjeant R, Fehlings MG (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine 8:215–221.  https://doi.org/10.3171/SPI/2008/8/3/215 CrossRefGoogle Scholar
  10. 10.
    Muramoto A, Imagama S, Ito Z, Wakao N, Ando K, Tauchi R, Hirano K, Matsui H, Matsumoto T, Matsuyama Y, Ishigro N (2013) The cutoff amplitude of transcranial motor-evoked potentials for predicting postoperative motor deficits in thoracic spine surgery. Spine 38:E21–E27.  https://doi.org/10.1097/BRS.0b013e3182796b15 CrossRefGoogle Scholar
  11. 11.
    Imagama S, Ando K, Kobayashi K, Hida T, Ito K, Tsushima M, Ishikawa Y, Matsumoto A, Morozumi M, Tanaka S, Machino M, Ota K, Nakashima H, Nishida Y, Matsuyama Y, Ishiguro N (2017) Factors for a good surgical outcome in posterior decompression and dekyphotic corrective fusion with instrumentation for thoracic ossification of the posterior longitudinal ligament: prospective single-center study. Oper Neurosurg (Hagerstown) 13:661–669.  https://doi.org/10.1093/ons/opx043 CrossRefGoogle Scholar
  12. 12.
    Imagama S, Ando K, Ito Z, Kobayashi K, Hida T, Ito K, Tsushima M, Ishikawa Y, Matsumoto A, Morozumi M, Tanaka S, Machino M, Ota K, Nakashima H, Wakao N, Nishida Y, Matsuyama Y, Ishiguro N (2017) Risk factors for ineffectiveness of posterior decompression and dekyphotic corrective fusion with instrumentation for beak-type thoracic ossification of the posterior longitudinal ligament: a single institute study. Neurosurgery 80:800–808.  https://doi.org/10.1093/neuros/nyw130 CrossRefGoogle Scholar
  13. 13.
    Imagama S, Ando K, Ito Z, Kobayashi K, Hida T, Ito K, Ishikawa Y, Tsushima M, Matsumoto A, Tanaka S, Morozumi M, Machino M, Ota K, Nakashima H, Wakao N, Nishida Y, Matsuyama Y, Ishiguro N (2016) Resection of beak-type thoracic ossification of the posterior longitudinal ligament from a posterior approach under intraoperative neurophysiological monitoring for paralysis after posterior decompression and fusion surgery. Global Spine J 6:812–821.  https://doi.org/10.1055/s-0036-1579662 CrossRefGoogle Scholar
  14. 14.
    Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T, Saito T, Takahashi M, Ito Z, Muramoto A, Fujiwara Y, Kida K, Yamada K, Wada K, Yamamoto N, Satomi K, Tani T (2014) A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery and Related Research. J Neurosurg Spine 20:102–107.  https://doi.org/10.3171/2013.10.SPINE12944 CrossRefGoogle Scholar
  15. 15.
    Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K (2001) Interobserver and intraobserver reliability of the Japanese Orthopaedic Association scoring system for evaluation of cervical compression myelopathy. Spine 26:1890–1894 (discussion 1895) CrossRefGoogle Scholar
  16. 16.
    Manzano G, Green BA, Vanni S, Levi AD (2008) Contemporary management of adult intramedullary spinal tumors-pathology and neurological outcomes related to surgical resection. Spinal Cord 46:540–546.  https://doi.org/10.1038/sc.2008.51 CrossRefGoogle Scholar
  17. 17.
    Ogawa Y, Toyama Y, Chiba K, Matsumoto M, Nakamura M, Takaishi H, Hirabayashi H, Hirabayashi K (2004) Long-term results of expansive open-door laminoplasty for ossification of the posterior longitudinal ligament of the cervical spine. J Neurosurg Spine 1:168–174.  https://doi.org/10.3171/spi.2004.1.2.0168 CrossRefGoogle Scholar
  18. 18.
    Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H (2007) Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 1: Clinical results and limitations of laminoplasty. Spine 32:647–653.  https://doi.org/10.1097/01.brs.0000257560.91147.86 CrossRefGoogle Scholar
  19. 19.
    Imagama S, Ando K, Takeuchi K, Kato S, Murakami H, Aizawa T, Ozawa H, Hasegawa T, Matsuyama Y, Koda M, Yamazaki M, Chikuda H, Shindo S, Nakagawa Y, Kimura A, Takeshita K, Wada K, Katoh H, Watanabe M, Yamada K, Furuya T, Tsuji T, Fujibayashi S, Mori K, Kawaguchi Y, Watanabe K, Matsumoto M, Yoshii T, Okawa A (2018) Perioperative complications after surgery for thoracic ossification of posterior longitudinal ligament- nationwide multicenter prospective study. Spine.  https://doi.org/10.1097/brs.0000000000002703 Google Scholar
  20. 20.
    Nakamae T, Tanaka N, Nakanishi K, Fujimoto Y, Sasaki H, Kamei N, Hamasaki T, Yamada K, Yamamoto R, Izumi B, Ochi M (2010) Quantitative assessment of myelopathy patients using motor evoked potentials produced by transcranial magnetic stimulation. Eur Spine J 19:685–690.  https://doi.org/10.1007/s00586-009-1246-8 CrossRefGoogle Scholar
  21. 21.
    Nakanishi K, Tanaka N, Kamei N, Hiramatsu T, Ujigo S, Sumiyoshi N, Rikita T, Takazawa A, Ochi M (2015) Electrophysiological assessments of the motor pathway in diabetic patients with compressive cervical myelopathy. J Neurosurg Spine 23:707–714.  https://doi.org/10.3171/2015.3.SPINE141060 CrossRefGoogle Scholar
  22. 22.
    Kirshblum SC, Botticello AL, Dyson-Hudson TA, Byrne R, Marino RJ, Lammertse DP (2016) Patterns of sacral sparing components on neurologic recovery in newly injured persons with traumatic spinal cord injury. Arch Phys Med Rehabil 97:1647–1655.  https://doi.org/10.1016/j.apmr.2016.02.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryNagoya University Graduate School of Medicine, NagoyaNagoyaJapan

Personalised recommendations