Advertisement

Rotational component alignment in patient-specific total knee arthroplasty compared with conventional cutting instrument

  • Nuttawut Chanalithichai
  • Nattapol TammachoteEmail author
  • Chane Jitapunkul
  • Supakit Kanitnate
Original Article • KNEE - ARTHROPLASTY
  • 33 Downloads

Abstract

Background

Although many studies investigated the accuracy of customized cutting block (CCB), the data on rotational alignment are still lacking. The study aimed to assess whether CCB improved the component rotational position compared with conventional cutting instrument (CCI) using computed tomography scanning.

Methods

Eighty-six of 102 total knee arthroplasties from the previous randomized study were analyzed. The outcomes were rotational position of the femoral and tibial components, frequency of outliers and intra-class correlation coefficient.

Results

The mean femoral component rotation was not different between CCB versus CCI: 0.9° ± 0.8° versus 1.1° ± 1.1° (P = 0.29). Both groups had similar outlier frequencies: 2% (CCB) versus 2% (CCI) (P = 0.74). CCB had nearly 1° less mean tibial component deviation compared with CCI (P < 0.001): (1) dorsal tangent reference (DTR): 0.7° ± 0.8° versus 1.5° ± 1.0°, and (2) tibial trans-epicondylar reference (TTR): 0.5° ± 0.9° versus 1.4° ± 1.1°. Outlier frequencies were similar: (1) DTR: 0% CCB versus 5% CCI (P = 0.24), and (2) TTR: 5% in CCB versus 12% CCI (P = 0.20). Measurements based on tibial tubercle showed that CCB had ~ 1.4° less mean tibial component deviation compared with CCI: 0.3° ± 1.4° versus 1.7° ± 1.6° (P < 0.001) with a corresponding, less frequency of outliers: 0% versus 19% (P = 0.002). However, there was poor intra-observer reproducibility (0.61).

Conclusions

CCB did not improve femoral component rotational alignment compared with CCI nor affect outlier frequency, but it marginally improved the accuracy of tibial rotational alignment. The tibial tubercle reference point had poor intra-observer reproducibility.

Keywords

Customized cutting block Conventional cutting instrument Total knee arthroplasty Rotational alignment 

Notes

Acknowledgements

Our institution provided the funding for this study. We thank Dr. Bob Taylor for reviewing the linguistic content of the article. We also thank all participants for providing the data used in this study.

Funding

This study was funded by Thammasat University.

Compliance with ethical standards

Conflict of interest

Nuttawut Chanalithichai, Nattapol Tammachote, Chane Jitapunkul and Supakit Kanitnate declared that they have no conflicts of interest. All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

  1. 1.
    Sikorski JM (2008) Alignment in total knee replacement. J Bone Joint Surg Br 90(9):1121–1127.  https://doi.org/10.1302/0301-620x.90b9.20793 CrossRefGoogle Scholar
  2. 2.
    Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471(1):127–133.  https://doi.org/10.1007/s11999-012-2533-y CrossRefGoogle Scholar
  3. 3.
    Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156Google Scholar
  4. 4.
    Bargren JH, Blaha JD, Freeman MA (1983) Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop Relat Res 173:178–183Google Scholar
  5. 5.
    Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59(1):77–79CrossRefGoogle Scholar
  6. 6.
    Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 366:155–163CrossRefGoogle Scholar
  7. 7.
    Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153CrossRefGoogle Scholar
  8. 8.
    Huang NF, Dowsey MM, Ee E, Stoney JD, Babazadeh S, Choong PF (2012) Coronal alignment correlates with outcome after total knee arthroplasty: five-year follow-up of a randomized controlled trial. J Arthroplasty 27(9):1737–1741.  https://doi.org/10.1016/j.arth.2012.03.058 CrossRefGoogle Scholar
  9. 9.
    Lombardi AV Jr, Berend KR, Adams JB (2008) Patient-specific approach in total knee arthroplasty. Orthopedics 31(9):927–930CrossRefGoogle Scholar
  10. 10.
    Ast MP, Nam D, Haas SB (2012) Patient-specific instrumentation for total knee arthroplasty: a review. Orthop Clin N Am 43(5):e17–22.  https://doi.org/10.1016/j.ocl.2012.07.004 CrossRefGoogle Scholar
  11. 11.
    Nam D, McArthur BA, Cross MB, Pearle AD, Mayman DJ, Haas SB (2012) Patient-specific instrumentation in total knee arthroplasty: a review. J Knee Surg 25(3):213–219CrossRefGoogle Scholar
  12. 12.
    Cavaignac E, Pailhe R, Laumond G, Murgier J, Reina N, Laffosse JM, Berard E, Chiron P (2015) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop 39(8):1541–1552.  https://doi.org/10.1007/s00264-014-2549-x CrossRefGoogle Scholar
  13. 13.
    Thienpont E, Schwab PE, Fennema P (2014) A systematic review and meta-analysis of patient-specific instrumentation for improving alignment of the components in total knee replacement. Bone Joint J 96-b(8):1052–1061.  https://doi.org/10.1302/0301-620x.96b8.33747 CrossRefGoogle Scholar
  14. 14.
    Fu H, Wang J, Zhou S, Cheng T, Zhang W, Wang Q, Zhang X (2015) No difference in mechanical alignment and femoral component placement between patient-specific instrumentation and conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 23(11):3288–3295.  https://doi.org/10.1007/s00167-014-3115-1 CrossRefGoogle Scholar
  15. 15.
    Voleti PB, Hamula MJ, Baldwin KD, Lee GC (2014) Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty 29(9):1709–1712.  https://doi.org/10.1016/j.arth.2014.01.039 CrossRefGoogle Scholar
  16. 16.
    Russell R, Brown T, Huo M, Jones R (2014) Patient-specific instrumentation does not improve alignment in total knee arthroplasty. J Knee Surg 27(6):501–504.  https://doi.org/10.1055/s-0034-1368143 CrossRefGoogle Scholar
  17. 17.
    Mannan A, Smith TO, Sagar C, London NJ, Molitor PJ (2015) No demonstrable benefit for coronal alignment outcomes in PSI knee arthroplasty: a systematic review and meta-analysis. Orthop Traumatol Surg Res 101(4):461–468.  https://doi.org/10.1016/j.otsr.2014.12.018 CrossRefGoogle Scholar
  18. 18.
    Noble JW Jr, Moore CA, Liu N (2012) The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty 27(1):153–155.  https://doi.org/10.1016/j.arth.2011.07.006 CrossRefGoogle Scholar
  19. 19.
    Daniilidis K, Tibesku CO (2013) Frontal plane alignment after total knee arthroplasty using patient-specific instruments. Int Orthop 37(1):45–50.  https://doi.org/10.1007/s00264-012-1732-1 CrossRefGoogle Scholar
  20. 20.
    Daniilidis K, Tibesku CO (2014) A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop 38(3):503–508.  https://doi.org/10.1007/s00264-013-2028-9 CrossRefGoogle Scholar
  21. 21.
    Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G (2013) Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty 28(6):964–970.  https://doi.org/10.1016/j.arth.2012.09.010 CrossRefGoogle Scholar
  22. 22.
    Heyse TJ, Tibesku CO (2014) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee 21(1):268–271.  https://doi.org/10.1016/j.knee.2012.10.009 CrossRefGoogle Scholar
  23. 23.
    Tammachote N, Panichkul P, Kanitnate S (2017) Comparison of customized cutting block and conventional cutting instrument in total knee arthroplasty: a randomized controlled trial. J Arthroplasty 15:12.  https://doi.org/10.1016/j.arth.2017.09.055 Google Scholar
  24. 24.
    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47Google Scholar
  25. 25.
    Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55CrossRefGoogle Scholar
  26. 26.
    Heyse TJ, Stiehl JB, Tibesku CO (2015) Measuring tibial component rotation of TKA in MRI: what is reproducible? Knee 22(6):604–608.  https://doi.org/10.1016/j.knee.2015.01.009 CrossRefGoogle Scholar
  27. 27.
    Bonnin MP, Saffarini M, Mercier PE, Laurent JR, Carrillon Y (2011) Is the anterior tibial tuberosity a reliable rotational landmark for the tibial component in total knee arthroplasty? J Arthroplasty 26(2):260–267.  https://doi.org/10.1016/j.arth.2010.03.015 CrossRefGoogle Scholar
  28. 28.
    Luring C, Perlick L, Bathis H, Tingart M, Grifka J (2007) The effect of femoral component rotation on patellar tracking in total knee arthroplasty. Orthopedics 30(11):965–967Google Scholar
  29. 29.
    Keshmiri A, Maderbacher G, Baier C, Zeman F, Grifka J, Springorum HR (2016) Significant influence of rotational limb alignment parameters on patellar kinematics: an in vitro study. Knee Surg Sports Traumatol Arthrosc 24(8):2407–2414.  https://doi.org/10.1007/s00167-014-3434-2 CrossRefGoogle Scholar
  30. 30.
    Rhoads DD, Noble PC, Reuben JD, Mahoney OM, Tullos HS (1990) The effect of femoral component position on patellar tracking after total knee arthroplasty. Clin Orthop Relat Res 260:43–51CrossRefGoogle Scholar
  31. 31.
    Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD (2007) Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 458:131–136.  https://doi.org/10.1097/BLO.0b013e3180332d97 Google Scholar
  32. 32.
    Pietsch M, Hofmann S (2012) Early revision for isolated internal malrotation of the femoral component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(6):1057–1063.  https://doi.org/10.1007/s00167-011-1637-3 CrossRefGoogle Scholar
  33. 33.
    Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469(8):2346–2355.  https://doi.org/10.1007/s11999-011-1889-8 CrossRefGoogle Scholar
  34. 34.
    Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21(10):2213–2219.  https://doi.org/10.1007/s00167-013-2623-8 CrossRefGoogle Scholar
  35. 35.
    Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472(1):263–271.  https://doi.org/10.1007/s11999-013-2997-4 CrossRefGoogle Scholar
  36. 36.
    Chotanaphuti T, Wangwittayakul V, Khuangsirikul S, Foojareonyos T (2014) The accuracy of component alignment in custom cutting blocks compared with conventional total knee arthroplasty instrumentation: prospective control trial. Knee 21(1):185–188.  https://doi.org/10.1016/j.knee.2013.08.003 CrossRefGoogle Scholar
  37. 37.
    Heyse TJ, Tibesku CO (2015) Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg 135(5):697–701.  https://doi.org/10.1007/s00402-015-2157-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OrthopaedicsThammasat UniversityKhlong LuangThailand

Personalised recommendations