Analysis of parameters influencing intraarticular temperature during radiofrequency use in shoulder arthroscopy

  • Matthieu ChivotEmail author
  • Stéphane Airaudi
  • Alexandre Galland
  • Renaud Gravier



The aim of this study was to analyze the influence of several factors on the temperature in the work chamber during shoulder arthroscopy procedures in order to identify danger zones when using radiofrequency.


Intraarticular temperature was measured intraoperatively using system with special probe that directly measured the temperature in 22 patients. Data collection was prospective. The main parameters studied were the measurement of the temperature depending on: localization of the procedure (glenohumeral or subacromial), the use of coagulation or ablation, the number of portals, the pressure of the arthropump, the time of use, the blood pressure and the temperature of the operating room.


Ninety-three recordings were made. No complications were identified. Addition of a portal reduces the average elevation of 3.8 °C (p < 0.05). Ambient temperature above 19.15 °C with two portals leads to an average increase of 13.3 °C (p < 0.05). Increasing the pressure of the arthropump of 10 mmHg increases the temperature of 0.8 °C (p < 0.05). No significant difference was found on the change in blood pressure, location and mode of use.


These results show the interest of controlling these factors when performing shoulder arthroscopy procedure. This study identifies situations of high joint risk when using radiofrequency and thus to prevent secondary complications such as burns and massive chondrolyses.


Arthroscopy Shoulder Radiofrequency Temperature Complications 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Statistiques activité MCO (indicateur hospi-diag) “Arthroscopies de l'épaule” par GHM (Groupement Homogène de Malades), Données de l’Agence technique de l’information sur l’hospitalisation.
  2. 2.
    Pell RF, Uhl RL (2004) Complications of thermal ablation in wrist arthroscopy. Arthroscopy 20(Suppl 2):84–86. CrossRefGoogle Scholar
  3. 3.
    Lubowitz JH, Poehling GG (2007) Glenohumeral thermal capsulorrhaphy is not recommended—shoulder chondrolysis requires additional research. Arthroscopy 23:687. CrossRefGoogle Scholar
  4. 4.
    Good CR, Shindle MK, Kelly BT et al (2007) Glenohumeral chondrolysis after shoulder arthroscopy with thermal capsulorrhaphy. Arthroscopy 23:797.e1–797.e5. Google Scholar
  5. 5.
    Hanypsiak BT, Faulks C, Fine K et al (2004) Rupture of the biceps tendon after arthroscopic thermal capsulorrhaphy. Arthroscopy 20(Suppl 2):77–79. CrossRefGoogle Scholar
  6. 6.
    Obrzut SL, Hecht P, Hayashi K et al (1998) The effect of radiofrequency energy on the length and temperature properties of the glenohumeral joint capsule. Arthroscopy 14:395–400CrossRefGoogle Scholar
  7. 7.
    Toth AP, Warren RF, Petrigliano FA et al (2011) Thermal shrinkage for shoulder instability. HSS J 7:108–114. CrossRefGoogle Scholar
  8. 8.
    Lecoq C, Branfaux M (2014) Brulures cutanées en rapport avec le matériel d’electro-coagulation en chirurgie arthroscopiqe, Session Orthorisq, Société Francaise de Chirurgie Orthopédique et TraumatologiqueGoogle Scholar
  9. 9.
    Ryu JH, Savoie FH (2010) Postarthroscopic glenohumeral chondrolysis of the shoulder. Sports Med Arthrosc 18:181–187. CrossRefGoogle Scholar
  10. 10.
    ANSM (Agence National de Sécurité du médicament et des produits de santé) (2015) Systèmes d’électrocoagulation en arthroscopie: Rappel de bonne utilisation pour prévenir le risque de brûlure cutanée.
  11. 11.
    Horstman CL, McLaughlin RM (2006) The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues. Vet Comp Orthop Traumatol 19:65–71CrossRefGoogle Scholar
  12. 12.
    Voss JR, Lu Y, Edwards RB et al (2006) Effects of thermal energy on chondrocyte viability. Am J Vet Res 67:1708–1712. CrossRefGoogle Scholar
  13. 13.
    Ho E, Cofield RH, Balm MR et al (1999) Neurologic complications of surgery for anterior shoulder instability. J Shoulder Elbow Surg 8:266–270CrossRefGoogle Scholar
  14. 14.
    Greis PE, Burks RT, Schickendantz MS, Sandmeier R (2001) Axillary nerve injury after thermal capsular shrinkage of the shoulder. J Shoulder Elbow Surg 10:231–235. CrossRefGoogle Scholar
  15. 15.
    Troxell CR, Morgan CD, Rajan S et al (2011) Dermal burns associated with bipolar radiofrequency ablation in the subacromial space. Arthroscopy 27:142–144. CrossRefGoogle Scholar
  16. 16.
    Lu Y, Bogdanske J, Lopez M et al (2005) Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature. Arthroscopy 21:592–596. CrossRefGoogle Scholar
  17. 17.
    Zoric BB, Horn N, Braun S, Millett PJ (2009) Factors influencing intra-articular fluid temperature profiles with radiofrequency ablation. J Bone Joint Surg Am 91:2448–2454. CrossRefGoogle Scholar
  18. 18.
    Huber M, Eder C, Mueller M et al (2013) Temperature profile of radiofrequency probe application in wrist arthroscopy: monopolar versus bipolar. Arthroscopy 29:645–652. CrossRefGoogle Scholar
  19. 19.
    McKeon B, Baltz MS, Curtis A, Scheller A (2007) Fluid temperatures during radiofrequency use in shoulder arthroscopy: a cadaveric study. J Shoulder Elbow Surg 16:107–111. CrossRefGoogle Scholar
  20. 20.
    Huynh V, Barbier O, Bajard X et al (2017) Subacromial temperature profile during bipolar radiofrequency use in shoulder arthroscopy. Comparison of Coblation(®) vs. VAPR(®). Orthop Traumatol Surg Res 103:489–491. CrossRefGoogle Scholar
  21. 21.
    Good CR, Shindle MK, Griffith MH et al (2009) Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy. J Bone Joint Surg Am 91:429–434. CrossRefGoogle Scholar
  22. 22.
    Davies H, Wynn-Jones H, De Smet T et al (2009) Fluid temperatures during arthroscopic subacromial decompression using a radiofrequency probe. Acta Orthop Belg 75:153–157Google Scholar
  23. 23.
    Barker SL, Johnstone AJ, Kumar K (2012) In vivo temperature measurement in the subacromial bursa during arthroscopic subacromial decompression. J Shoulder Elbow Surg 21:804–807. CrossRefGoogle Scholar
  24. 24.
    Ghostine B, el Khoury FI, Roue J, Dagher E (2014) Influence de la radiofréquence sur la température intra-articulaire en arthroscopie de l’épaule. Revue de Chirurgie Orthopédique et Traumatologique 100:e6. CrossRefGoogle Scholar
  25. 25.
    Li S, Chien S, Brånemark P-I (1999) Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 17:891–899. CrossRefGoogle Scholar
  26. 26.
    Züger BJ, Ott B, Mainil-Varlet P et al (2001) Laser solder welding of articular cartilage: tensile strength and chondrocyte viability. Lasers Surg Med 28:427–434. CrossRefGoogle Scholar
  27. 27.
    Caffey S, McPherson E, Moore B et al (2005) Effects of radiofrequency energy on human articular cartilage. Am J Sports Med 33:1035–1039. CrossRefGoogle Scholar
  28. 28.
    Kaplan LD, Ernsthausen JM, Bradley JP et al (2003) The thermal field of radiofrequency probes at chondroplasty settings. Arthroscopy 19:632–640. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Matthieu Chivot
    • 1
    • 2
    Email author
  • Stéphane Airaudi
    • 1
  • Alexandre Galland
    • 1
  • Renaud Gravier
    • 1
  1. 1.Department of Orthopedic Surgery and TraumatologyClinique Monticelli-Vélodrome (Groupe Ramsay Générale de Santé)MarseilleFrance
  2. 2.Aix-Marseille University, CNRS, ISM, UMR 7287MarseilleFrance

Personalised recommendations