The correlation between the femoral anterior cruciate ligament footprint area and the morphology of the distal femur: three-dimensional CT evaluation in cadaveric knees

  • Makoto SurugaEmail author
  • Takashi Horaguchi
  • Takanori Iriuchishima
  • Genki Iwama
  • Yoshiyuki Yahagi
  • Yasuaki Tokuhashi
  • Shin Aizawa
Original Article • KNEE - ANATOMY



“Anatomical” anterior cruciate ligament (ACL) reconstruction is defined as the functional restoration of the ACL to its native dimensions. It is essential to obtain more accurate predictors of ACL size before surgery. The purpose of this study was to investigate the correlation between the native femoral ACL footprint size and the morphology of the distal femur using three-dimensional CT (3D-CT).


Thirty non-paired Japanese human cadaver knees were used. All soft tissues around the knee were resected except the ACL. For the evaluation of femoral condyle morphology, trans-epicondylar length (TEL), notch outlet length, axial notch area, and notch width index were measured using 3D-CT. The ACL was cut in the middle, and the femoral bone was cut at the most proximal point of the femoral notch. The ACL was carefully dissected, and the boundaries of the ACL insertion site were outlined on the femoral side. An accurate lateral view of the femoral condyle was photographed with a digital camera. The size of the femoral ACL footprint, length of Blumensaat’s line, and the height and area of the lateral wall of the femoral intercondylar notch were measured with ImageJ software.


Notch height, lateral notch area, and TEL were significantly correlated with the femoral ACL footprint area. Both axial notch area and notch outlet length were significantly correlated with the femoral mid-substance insertion area.


Morphological evaluation using 3D-CT preoperatively may be useful in predicting the femoral ACL footprint size.


Anterior cruciate ligament Anteromedial bundle Posterolateral bundle Fan-like extension fibers Mid-substance 


Compliance with ethical standards

Conflict of interest

The authors have no financial relationships to disclose.


  1. 1.
    Iriuchishima T, Tajima G, Ingham SJ, Shen W, Horaguchi T, Saito A, Smolinski P, Fu FH (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17(6):590–594CrossRefPubMedGoogle Scholar
  2. 2.
    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687CrossRefPubMedGoogle Scholar
  3. 3.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304CrossRefPubMedGoogle Scholar
  4. 4.
    Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23(6):618–628CrossRefPubMedGoogle Scholar
  5. 5.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666CrossRefPubMedGoogle Scholar
  6. 6.
    Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among three different procedures. Arthroscopy 22(3):240–251CrossRefPubMedGoogle Scholar
  7. 7.
    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single-and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med 39(8):1789–1799CrossRefPubMedGoogle Scholar
  8. 8.
    Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225CrossRefPubMedGoogle Scholar
  9. 9.
    Iriuchishima T, Tajima G, Shirakura K, Morimoto Y, Kubomura T, Horaguchi T, Fu FH (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131(8):1085–1090CrossRefPubMedGoogle Scholar
  10. 10.
    Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Fu FH (2013) Size comparison of ACL footprint and reconstructed auto graft. Knee Surg Sports Traumatol Arthrosc 21(4):797–803CrossRefPubMedGoogle Scholar
  11. 11.
    Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749CrossRefPubMedGoogle Scholar
  12. 12.
    Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113CrossRefPubMedGoogle Scholar
  13. 13.
    Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25(1):69–72CrossRefPubMedGoogle Scholar
  14. 14.
    Siebold R, Ellert T, Metz S, Metz J (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy 24(5):585–592CrossRefPubMedGoogle Scholar
  15. 15.
    Suruga M, Horaguchi T, Iriuchishima T, Yahagi Y, Iwama G, Tokuhashi Y, Aizawa S (2017) Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Arch Orthop Trauma Surg 137(8):1107–1113CrossRefPubMedGoogle Scholar
  16. 16.
    van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268CrossRefPubMedGoogle Scholar
  17. 17.
    Shino K, Nakata K, Nakamura N, Toritsuka Y, Horibe S, Nakagawa S, Suzuki T (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24(10):1178–1183CrossRefPubMedGoogle Scholar
  18. 18.
    Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7(4):209–214CrossRefPubMedGoogle Scholar
  19. 19.
    Stijak L, Randonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age difference. Knee Surg Sports Traumatol Arthrosc 17(7):812–817CrossRefPubMedGoogle Scholar
  20. 20.
    van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27(9):1235–1241CrossRefPubMedGoogle Scholar
  21. 21.
    Wolters F, Vrooijink SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19:S17–S21CrossRefPubMedGoogle Scholar
  22. 22.
    Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213CrossRefPubMedGoogle Scholar
  23. 23.
    Mochizuki T, Muneta T, Nagase T, Shirasawa S, Akita KI, Sekiya I (2006) Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction. Arthroscopy 22(4):356–361CrossRefPubMedGoogle Scholar
  24. 24.
    Mochizuki T, Fujishiro H, Nimura A, Mahakkanukrauh P, Yasuda K, Muneta T, Akita K (2014) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc 22(2):336–344CrossRefPubMedGoogle Scholar
  25. 25.
    Iriuchishima T, Fu FH, Ryu K, Suruga M, Yahagi Y, Aizawa S (2018) Sagittal femoral condyle morphology correlates with femoral tunnel length in anatomical single bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26(4):1110–1116PubMedGoogle Scholar
  26. 26.
    Iriuchishima T, Ryu K, Yorifuji H, Aizawa S, Fu FH (2014) Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surg Sports Traumatol Arthrosc 22(7):1573–1579CrossRefPubMedGoogle Scholar
  27. 27.
    Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24(1):39–43CrossRefPubMedGoogle Scholar
  28. 28.
    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthosc 18(9):1257–1262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryNihon University School of MedicineTokyoJapan
  2. 2.Department of Orthopaedic SurgeryNihon University HospitalTokyoJapan
  3. 3.Department of Orthopaedic SurgeryKamimoku Hot Springs HospitalMinakamiJapan
  4. 4.Department of Orthopaedic SurgeryKawaguchi Municipal Medical CenterKawaguchiJapan
  5. 5.Department of Functional MorphologyNihon University School of MedicineTokyoJapan

Personalised recommendations