Advertisement

Similar thromboprophylaxis with rivaroxaban and low molecular weight heparin but fewer hemorrhagic complications with combined intra-articular and intravenous tranexamic acid in total knee arthroplasty

  • Panayiotis K. Karampinas
  • Panayiotis D. Megaloikonomos
  • Kalliopi Lampropoulou-Adamidou
  • Eleftherios G. Papadelis
  • Andreas F. MavrogenisEmail author
  • John A. Vlamis
  • Spyros G. Pneumaticos
Original Article • KNEE - ARTHROPLASTY

Abstract

Purpose

To evaluate the efficacy of the combined intravenous and intra-articular administration of tranexamic acid (TXA) to control the collateral effects and complications of rivaroxaban (RIV) after total knee arthroplasty (TKA) and to compare thromboprophylaxis schemes with and without TXA, RIV and low molecular weight heparin (LMWH).

Materials and methods

We prospectively studied 158 TKA patients from 2014 to 2018. The patients were randomly assigned into three groups. Group A (46 patients) was administered intravenous and intra-articular TXA and RIV postoperatively; group B (58 patients) was administered TXA as in group A and LMWH postoperatively; and group C (54 patients) was administered saline as in group A and RIV postoperatively. We evaluated blood loss, transfusion requirements and hemorrhagic complications.

Results

Hct and Hb values significantly decreased in group C compared to groups A and B, without any difference between groups A and B. Suction drain blood volume output was significantly higher in group C compared to group A and B, without any difference between group A and B. Hemorrhagic complications were more common in group C. No patient experienced clinical findings of VTE.

Conclusion

Combined intravenous and intra-articular administration of TXA is safe and effective in TKA, with fewer hemorrhagic complications compared to placebo. Thromboprophylaxis with RIV and LMWH is similar.

Keywords

Total knee arthroplasty Thromboprophylaxis Blood loss Transfusion Tranexamic acid Rivaroxaban 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Messerschmidt C, Friedman RJ (2015) Clinical experience with novel oral anticoagulants for thromboprophylaxis after elective hip and knee arthroplasty. Arterioscler Thromb Vasc Biol 35(4):771–778.  https://doi.org/10.1161/ATVBAHA.114.303400 CrossRefGoogle Scholar
  2. 2.
    Papadopoulos DV, Kostas-Agnantis I, Gkiatas I, Tsantes AG, Ziara P, Korompilias AV (2017) The role of new oral anticoagulants in orthopaedics: an update of recent evidence. Eur J Orthop Surg Traumatol 27(5):573–582.  https://doi.org/10.1007/s00590-017-1940-x CrossRefGoogle Scholar
  3. 3.
    Venker BT, Ganti BR, Lin H, Lee ED, Nunley RM, Gage BF (2017) Safety and efficacy of new anticoagulants for the prevention of venous thromboembolism after hip and knee arthroplasty: a meta-analysis. J Arthroplasty 32(2):645–652.  https://doi.org/10.1016/j.arth.2016.09.033 CrossRefGoogle Scholar
  4. 4.
    Frost C, Song Y, Barrett YC, Wang J, Pursley J, Boyd RA, LaCreta F (2014) A randomized direct comparison of the pharmacokinetics and pharmacodynamics of apixaban and rivaroxaban. Clin Pharmacol 6:179–187.  https://doi.org/10.2147/CPAA.S61131 Google Scholar
  5. 5.
    Feng W, Wu K, Liu Z, Kong G, Deng Z, Chen S, Wu Y, Chen M, Liu S, Wang H (2015) Oral direct factor Xa inhibitor versus enoxaparin for thromboprophylaxis after hip or knee arthroplasty: systemic review, traditional meta-analysis, dose-response meta-analysis and network meta-analysis. Thromb Res 136(6):1133–1144.  https://doi.org/10.1016/j.thromres.2015.10.009 CrossRefGoogle Scholar
  6. 6.
    Huisman MV, Quinlan DJ, Dahl OE, Schulman S (2010) Enoxaparin versus dabigatran or rivaroxaban for thromboprophylaxis after hip or knee arthroplasty: results of separate pooled analyses of phase III multicenter randomized trials. Circ Cardiovasc Qual Outcomes 3(6):652–660.  https://doi.org/10.1161/CIRCOUTCOMES.110.957712 CrossRefGoogle Scholar
  7. 7.
    Eriksson BI, Borris LC, Friedman RJ, Haas S, Huisman MV, Kakkar AK, Bandel TJ, Beckmann H, Muehlhofer E, Misselwitz F, Geerts W, Group RS (2008) Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty. N Engl J Med 358(26):2765–2775.  https://doi.org/10.1056/NEJMoa0800374 CrossRefGoogle Scholar
  8. 8.
    Turpie AG, Lassen MR, Davidson BL, Bauer KA, Gent M, Kwong LM, Cushner FD, Lotke PA, Berkowitz SD, Bandel TJ, Benson A, Misselwitz F, Fisher WD, Investigators R (2009) Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. Lancet 373(9676):1673–1680.  https://doi.org/10.1016/S0140-6736(09)60734-0 CrossRefGoogle Scholar
  9. 9.
    Marra F, Rosso F, Bruzzone M, Bonasia DE, Dettoni F, Rossi R (2016) Use of tranexamic acid in total knee arthroplasty. Joints 4(4):202–213.  https://doi.org/10.11138/jts/2016.4.4.202 CrossRefGoogle Scholar
  10. 10.
    Jain NP, Nisthane PP, Shah NA (2016) Combined administration of systemic and topical tranexamic acid for total knee arthroplasty: can it be a better regimen and yet safe? A randomized controlled trial. J Arthroplasty 31(2):542–547.  https://doi.org/10.1016/j.arth.2015.09.029 CrossRefGoogle Scholar
  11. 11.
    Li JF, Li H, Zhao H, Wang J, Liu S, Song Y, Wu HF (2017) Combined use of intravenous and topical versus intravenous tranexamic acid in primary total knee and hip arthroplasty: a meta-analysis of randomised controlled trials. J Orthop Surg Res 12(1):22.  https://doi.org/10.1186/s13018-017-0520-4 CrossRefGoogle Scholar
  12. 12.
    Yuan ZF, Yin H, Ma WP, Xing DL (2016) The combined effect of administration of intravenous and topical tranexamic acid on blood loss and transfusion rate in total knee arthroplasty: combined tranexamic acid for TKA. Bone Joint Res 5(8):353–361.  https://doi.org/10.1302/2046-3758.58.BJR-2016-0001.R2 CrossRefGoogle Scholar
  13. 13.
    Lee SY, Chong S, Balasubramanian D, Na YG, Kim TK (2017) What is the ideal route of administration of tranexamic acid in TKA? A randomized controlled trial. Clin Orthop Relat Res 475(8):1987–1996.  https://doi.org/10.1007/s11999-017-5311-z CrossRefGoogle Scholar
  14. 14.
    Iseki T, Tsukada S, Wakui M, Yoshiya S (2018) Intravenous tranexamic acid only versus combined intravenous and intra-articular tranexamic acid for perioperative blood loss in patients undergoing total knee arthroplasty. Eur J Orthop Surg Traumatol.  https://doi.org/10.1007/s00590-018-2210-2 Google Scholar
  15. 15.
    Shen PF, Hou WL, Chen JB, Wang B, Qu YX (2015) Effectiveness and safety of tranexamic acid for total knee arthroplasty: a prospective randomized controlled trial. Med Sci Monit 21:576–581.  https://doi.org/10.12659/MSM.892768 CrossRefGoogle Scholar
  16. 16.
    Charoencholvanich K, Siriwattanasakul P (2011) Tranexamic acid reduces blood loss and blood transfusion after TKA: a prospective randomized controlled trial. Clin Orthop Relat Res 469(10):2874–2880.  https://doi.org/10.1007/s11999-011-1874-2 CrossRefGoogle Scholar
  17. 17.
    Ozler T, Ulucay C, Onal A, Altintas F (2015) Comparison of switch-therapy modalities (enoxaparin to rivaroxaban/dabigatran) and enoxaparin monotherapy after hip and knee replacement. Acta Orthop Traumatol Turc 49(3):255–259.  https://doi.org/10.3944/AOTT.2015.14.0219 Google Scholar
  18. 18.
    Digas G, Koutsogiannis I, Meletiadis G, Antonopoulou E, Karamoulas V, Bikos C (2015) Intra-articular injection of tranexamic acid reduce blood loss in cemented total knee arthroplasty. Eur J Orthop Surg Traumatol 25(7):1181–1188.  https://doi.org/10.1007/s00590-015-1664-8 CrossRefGoogle Scholar
  19. 19.
    Yozawa S, Ogawa H, Matsumoto K, Akiyama H (2018) Periarticular injection of tranexamic acid reduces blood loss and the necessity for allogeneic transfusion after total knee arthroplasty using autologous transfusion: a retrospective observational study. J Arthroplasty 33(1):86–89.  https://doi.org/10.1016/j.arth.2017.08.018 CrossRefGoogle Scholar
  20. 20.
    Ishida K, Tsumura N, Kitagawa A, Hamamura S, Fukuda K, Dogaki Y, Kubo S, Matsumoto T, Matsushita T, Chin T, Iguchi T, Kurosaka M, Kuroda R (2011) Intra-articular injection of tranexamic acid reduces not only blood loss but also knee joint swelling after total knee arthroplasty. Int Orthop 35(11):1639–1645.  https://doi.org/10.1007/s00264-010-1205-3 CrossRefGoogle Scholar
  21. 21.
    George DA, Sarraf KM, Nwaboku H (2015) Single perioperative dose of tranexamic acid in primary hip and knee arthroplasty. Eur J Orthop Surg Traumatol 25(1):129–133.  https://doi.org/10.1007/s00590-014-1457-5 CrossRefGoogle Scholar
  22. 22.
    Wu Y, Yang T, Zeng Y, Li C, Shen B, Pei F (2017) Clamping drainage is unnecessary after minimally invasive total knee arthroplasty in patients with tranexamic acid: a randomized, controlled trial. Medicine (Baltimore) 96(7):e5804.  https://doi.org/10.1097/MD.0000000000005804 CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhang JW, Wang BH (2017) Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty: a meta-analysis. Medicine (Baltimore) 96(26):e7363.  https://doi.org/10.1097/MD.0000000000007363 CrossRefGoogle Scholar
  24. 24.
    Lin PC, Hsu CH, Chen WS, Wang JW (2011) Does tranexamic acid save blood in minimally invasive total knee arthroplasty? Clin Orthop Relat Res 469(7):1995–2002.  https://doi.org/10.1007/s11999-011-1789-y CrossRefGoogle Scholar
  25. 25.
    Lin PC, Hsu CH, Huang CC, Chen WS, Wang JW (2012) The blood-saving effect of tranexamic acid in minimally invasive total knee replacement: is an additional pre-operative injection effective? J Bone Joint Surg Br 94(7):932–936.  https://doi.org/10.1302/0301-620X.94B7.28386 CrossRefGoogle Scholar
  26. 26.
    Xie J, Ma J, Huang Q, Yue C, Pei F (2017) Comparison of enoxaparin and rivaroxaban in balance of anti-fibrinolysis and anticoagulation following primary total knee replacement: a pilot study. Med Sci Monit 23:704–711CrossRefGoogle Scholar
  27. 27.
    Sarzaeem MM, Razi M, Kazemian G, Moghaddam ME, Rasi AM, Karimi M (2014) Comparing efficacy of three methods of tranexamic acid administration in reducing hemoglobin drop following total knee arthroplasty. J Arthroplasty 29(8):1521–1524.  https://doi.org/10.1016/j.arth.2014.02.031 CrossRefGoogle Scholar
  28. 28.
    Yen SH, Lin PC, Chen B, Huang CC, Wang JW (2017) Topical tranexamic acid reduces blood loss in minimally invasive total knee arthroplasty receiving rivaroxaban. Biomed Res Int 2017:9105645.  https://doi.org/10.1155/2017/9105645 CrossRefGoogle Scholar
  29. 29.
    Hu KZ, Sun HY, Sui C (2017) Effects of five treatment regimens on blood loss and blood transfusion in total knee arthroplasty: a preliminary study in China. Int J Clin Pharmacol Ther 55(5):433–441.  https://doi.org/10.5414/CP202813 CrossRefGoogle Scholar
  30. 30.
    Wang JW, Chen B, Lin PC, Yen SH, Huang CC, Kuo FC (2017) The efficacy of combined use of rivaroxaban and tranexamic acid on blood conservation in minimally invasive total knee arthroplasty a double-blind randomized, controlled trial. J Arthroplasty 32(3):801–806.  https://doi.org/10.1016/j.arth.2016.08.020 CrossRefGoogle Scholar
  31. 31.
    Yen SH, Lin PC, Kuo FC, Wang JW (2014) Thromboprophylaxis after minimally invasive total knee arthroplasty: a comparison of rivaroxaban and enoxaparin. Biomed J 37(4):199–204.  https://doi.org/10.4103/2319-4170.125627 CrossRefGoogle Scholar
  32. 32.
    Lin ZX, Woolf SK (2016) Safety, efficacy, and cost-effectiveness of tranexamic acid in orthopedic surgery. Orthopedics 39(2):119–130.  https://doi.org/10.3928/01477447-20160301-05 CrossRefGoogle Scholar
  33. 33.
    Goyal N, Chen DB, Harris IA, Rowden N, Kirsh G, MacDessi SJ (2016) Clinical and financial benefits of intra-articular tranexamic acid in total knee arthroplasty. J Orthop Surg (Hong Kong) 24(1):3–6.  https://doi.org/10.1177/230949901602400103 CrossRefGoogle Scholar
  34. 34.
    Vigna-Taglianti F, Basso L, Rolfo P, Brambilla R, Vaccari F, Lanci G, Russo R (2014) Tranexamic acid for reducing blood transfusions in arthroplasty interventions: a cost-effective practice. Eur J Orthop Surg Traumatol 24(4):545–551.  https://doi.org/10.1007/s00590-013-1225-y CrossRefGoogle Scholar
  35. 35.
    Jeon YS, Park JS, Kim MK (2017) Optimal release timing of temporary drain clamping after total knee arthroplasty. J Orthop Surg Res 12(1):47.  https://doi.org/10.1186/s13018-017-0550-y CrossRefGoogle Scholar
  36. 36.
    Pornrattanamaneewong C, Narkbunnam R, Siriwattanasakul P, Chareancholvanich K (2012) Three-hour interval drain clamping reduces postoperative bleeding in total knee arthroplasty: a prospective randomized controlled trial. Arch Orthop Trauma Surg 132(7):1059–1063.  https://doi.org/10.1007/s00402-012-1501-z CrossRefGoogle Scholar
  37. 37.
    Raleigh E, Hing CB, Hanusiewicz AS, Fletcher SA, Price R (2007) Drain clamping in knee arthroplasty, a randomized controlled trial. ANZ J Surg 77(5):333–335.  https://doi.org/10.1111/j.1445-2197.2007.04053.x CrossRefGoogle Scholar
  38. 38.
    Russell RD, Hotchkiss WR, Knight JR, Huo MH (2013) The efficacy and safety of rivaroxaban for venous thromboembolism prophylaxis after total hip and total knee arthroplasty. Thrombosis 2013:762310.  https://doi.org/10.1155/2013/762310 CrossRefGoogle Scholar
  39. 39.
    Flevas DA, Megaloikonomos PD, Dimopoulos L, Mitsiokapa E, Koulouvaris P, Mavrogenis AF (2018) Thromboembolism prophylaxis in orthopaedics: an update. EFORT Open Rev 3(4):136–148.  https://doi.org/10.1302/2058-5241.3.170018 CrossRefGoogle Scholar
  40. 40.
    Kinov P, Tanchev PP, Ellis M, Volpin G (2014) Antithrombotic prophylaxis in major orthopaedic surgery: an historical overview and update of current recommendations. Int Orthop 38(1):169–175.  https://doi.org/10.1007/s00264-013-2134-8 CrossRefGoogle Scholar
  41. 41.
    Callaghan JJ, Dorr LD, Engh GA, Hanssen AD, Healy WL, Lachiewicz PF, Lonner JH, Lotke PA, Ranawat CS, Ritter MA, Salvati EA, Sculco TP, Thornhill TS, American Colleg of Chest Physicians (2005) Prophylaxis for thromboembolic disease: recommendations from the American College of Chest Physicians—are they appropriate for orthopaedic surgery? J Arthroplasty 20(3):273–274CrossRefGoogle Scholar
  42. 42.
    Levine MN, Raskob G, Beyth RJ, Kearon C, Schulman S (2004) Hemorrhagic complications of anticoagulant treatment: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 126(3 Suppl):287S–310S.  https://doi.org/10.1378/chest.126.3_suppl.287s CrossRefGoogle Scholar
  43. 43.
    Carrothers AD, Rodriguez-Elizalde SR, Rogers BA, Razmjou H, Gollish JD, Murnaghan JJ (2014) Patient-reported compliance with thromboprophylaxis using an oral factor Xa inhibitor (rivaroxaban) following total hip and total knee arthroplasty. J Arthroplasty 29(7):1463–1467.  https://doi.org/10.1016/j.arth.2013.02.001 CrossRefGoogle Scholar
  44. 44.
    Adam SS, McDuffie JR, Lachiewicz PF, Ortel TL, Williams JW Jr (2013) Comparative effectiveness of new oral anticoagulants and standard thromboprophylaxis in patients having total hip or knee replacement: a systematic review. Ann Intern Med 159(4):275–284.  https://doi.org/10.7326/0003-4819-159-4-201308200-00008 CrossRefGoogle Scholar
  45. 45.
    Monreal M, Folkerts K, Diamantopoulos A, Imberti D, Brosa M (2013) Cost-effectiveness impact of rivaroxaban versus new and existing prophylaxis for the prevention of venous thromboembolism after total hip or knee replacement surgery in France, Italy and Spain. Thromb Haemost 110(5):987–994.  https://doi.org/10.1160/TH12-12-0919 CrossRefGoogle Scholar
  46. 46.
    Mahmoudi M, Sobieraj DM (2013) The cost-effectiveness of oral direct factor Xa inhibitors compared with low-molecular-weight heparin for the prevention of venous thromboembolism prophylaxis in total hip or knee replacement surgery. Pharmacotherapy 33(12):1333–1340.  https://doi.org/10.1002/phar.1269 CrossRefGoogle Scholar
  47. 47.
    Jensen CD, Steval A, Partington PF, Reed MR, Muller SD (2011) Return to theatre following total hip and knee replacement, before and after the introduction of rivaroxaban: a retrospective cohort study. J Bone Joint Surg Br 93(1):91–95.  https://doi.org/10.1302/0301-620X.93B1.24987 CrossRefGoogle Scholar
  48. 48.
    Galat DD, McGovern SC, Hanssen AD, Larson DR, Harrington JR, Clarke HD (2008) Early return to surgery for evacuation of a postoperative hematoma after primary total knee arthroplasty. J Bone Joint Surg Am 90(11):2331–2336.  https://doi.org/10.2106/JBJS.G.01370 CrossRefGoogle Scholar
  49. 49.
    Chahal GS, Saithna A, Brewster M, Gilbody J, Lever S, Khan WS, Foguet P (2013) A comparison of complications requiring return to theatre in hip and knee arthroplasty patients taking enoxaparin versus rivaroxaban for thromboprophylaxis. Ortop Traumatol Rehabil 15(2):125–129.  https://doi.org/10.5604/15093492.1045953 CrossRefGoogle Scholar
  50. 50.
    Bloch BV, Patel V, Best AJ (2014) Thromboprophylaxis with dabigatran leads to an increased incidence of wound leakage and an increased length of stay after total joint replacement. Bone Joint J 96-B(1):122–126.  https://doi.org/10.1302/0301-620x.96b1.31569 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Panayiotis K. Karampinas
    • 2
  • Panayiotis D. Megaloikonomos
    • 1
  • Kalliopi Lampropoulou-Adamidou
    • 2
  • Eleftherios G. Papadelis
    • 2
  • Andreas F. Mavrogenis
    • 1
    Email author
  • John A. Vlamis
    • 2
  • Spyros G. Pneumaticos
    • 2
  1. 1.First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of MedicineAthensGreece
  2. 2.Third Departments of OrthopaedicsNational and Kapodistrian University of Athens, School of MedicineAthensGreece

Personalised recommendations