Advertisement

Does the hip positioning matter for oblique lumbar interbody fusion approach? A morphometric study

  • Kaissar FarahEmail author
  • Henri-Arthur Leroy
  • Melodie-Anne Karnoub
  • Louis Obled
  • Stephane Fuentes
  • Richard Assaker
Original Article

Abstract

Purpose

To evaluate whether left hip positioning widened the access corridor using oblique lateral interbody fusion (OLIF) approach during right lateral decubitus (RLD).

Methods

Ten healthy adult volunteers underwent a T2 lumbosacral MRI (1.5 T) in the supine position, RLD position with left hip in extension and then in flexion. L2–L3 to L5–S1 disc spaces were identified. At each level, left psoas surface (in cm2), access corridor (in mm) and vessel movement were calculated in the three positions. Paired t test was used for comparison.

Results

The mean surface of the left psoas ranged from 7.83 to 17.19 cm2 in the three positions (p > 0.05). From L2–3 to L4–5, in RLD, when the left hip shifted from extension to flexion, nor the access corridor nor vessel movements were significantly different. When the volunteers shifted from supine to RLD position with hip in extension, arteries moved 3.66–5.61 mm to the right (p < 0.05 at L2–3, L3–4 and L5–S1), while the venous structures moved 0.92–4.96 mm (p < 0.05 at L2–3) to the right. When the position shifted from supine to RLD with hip in flexion, the arterial structures moved 0.47–4.88 mm (p < 0.05 at L2–3 and L3–4) to the right, while the venous structures moved − 0.94 to 4.13 mm (p < 0.05 at L2–3 and L3–4) to the right.

Conclusion

Hip positioning was not associated with a significant widening of the surgical corridor. To perform OLIF, we advocate for RLD position with left hip in extension to move away the vascular structures and reduce the psoas volume.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

OLIF MRI Hip positioning Psoas Abdominal vessels 

Notes

Acknowledgements

We acknowledge Benoit DERRE for his technical help when performing MRI for the volunteers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

586_2019_6107_MOESM1_ESM.pptx (568 kb)
Supplementary file1 (PPTX 567 kb)

References

  1. 1.
    Kaiser MG, Eck JC, Groff MW, Watters WC 3rd, Dailey AT, Resnick DK, Choudhri TF, Sharan A, Wang JC, Mummaneni PV, Dhall SS, Ghogawala Z (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 1: introduction and methodology. J Neurosurg Spine 21:2–6.  https://doi.org/10.3171/2014.4.SPINE14257 CrossRefGoogle Scholar
  2. 2.
    Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18.  https://doi.org/10.3978/j.issn.2414-469X.2015.10.05 Google Scholar
  3. 3.
    Davis TT, Hynes RA, Fung DA, Spann SW, MacMillan M, Kwon B, Liu J, Acosta F, Drochner TE (2014) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 21:785–793.  https://doi.org/10.3171/2014.7.SPINE13564 CrossRefGoogle Scholar
  4. 4.
    Molinares DM, Davis TT, Fung DA (2016) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs: an MRI study. J Neurosurg Spine 24:248–255.  https://doi.org/10.3171/2015.3.SPINE13976 CrossRefGoogle Scholar
  5. 5.
    Assaker R (2004) Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine 71:459–469.  https://doi.org/10.1016/j.jbspin.2004.08.006 CrossRefGoogle Scholar
  6. 6.
    Xu DS, Walker CT, Godzik J, Turner JD, Smith W, Uribe JS (2018) Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann Transl Med 6:104.  https://doi.org/10.21037/atm.2018.03.24 CrossRefGoogle Scholar
  7. 7.
    Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 22:691–699 (discussion 700) CrossRefGoogle Scholar
  8. 8.
    Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S (2015) Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 40:E175–182.  https://doi.org/10.1097/BRS.0000000000000703 CrossRefGoogle Scholar
  9. 9.
    DiGiorgio AM, Edwards CS, Virk MS, Mummaneni PV, Chou D (2017) Stereotactic navigation for the prepsoas oblique lateral lumbar interbody fusion: technical note and case series. Neurosurg Focus 43:E14.  https://doi.org/10.3171/2017.5.FOCUS17168 CrossRefGoogle Scholar
  10. 10.
    Woods KR, Billys JB, Hynes RA (2017) Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 17:545–553.  https://doi.org/10.1016/j.spinee.2016.10.026 CrossRefGoogle Scholar
  11. 11.
    Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6:89–97.  https://doi.org/10.4184/asj.2012.6.2.89 CrossRefGoogle Scholar
  12. 12.
    Phan K, Mobbs RJ (2015) Oblique lumbar interbody fusion for revision of non-union following prior posterior surgery: a case report. Orthop Surg 7:364–367.  https://doi.org/10.1111/os.12204 CrossRefGoogle Scholar
  13. 13.
    Phan K, Maharaj M, Assem Y, Mobbs RJ (2016) Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF). J Clin Neurosci 31:23–29.  https://doi.org/10.1016/j.jocn.2016.02.030 CrossRefGoogle Scholar
  14. 14.
    Ohtori S, Mannoji C, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Sato J, Shiga Y, Abe K, Fujimoto K, Kanamoto H, Toyone T, Inoue G, Takahashi K (2015) Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J 9:565–572.  https://doi.org/10.4184/asj.2015.9.4.565 CrossRefGoogle Scholar
  15. 15.
    Berjano P, Langella F, Damilano M, Pejrona M, Buric J, Ismael M, Villafane JH, Lamartina C (2015) Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J 24(Suppl 3):369–371.  https://doi.org/10.1007/s00586-015-3929-7 CrossRefGoogle Scholar
  16. 16.
    Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32.  https://doi.org/10.1097/BRS.0b013e3181e1040a CrossRefGoogle Scholar
  17. 17.
    Knight RQ, Schwaegler P, Hanscom D, Roh J (2009) Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech 22:34–37.  https://doi.org/10.1097/BSD.0b013e3181679b8a CrossRefGoogle Scholar
  18. 18.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18.  https://doi.org/10.3171/2011.2.SPINE10374 CrossRefGoogle Scholar
  19. 19.
    Dakwar E, Le TV, Baaj AA, Le AX, Smith WD, Akbarnia BA, Uribe JS (2011) Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus 31:E18.  https://doi.org/10.3171/2011.7.FOCUS11164 CrossRefGoogle Scholar
  20. 20.
    Deukmedjian AR, Le TV, Dakwar E, Martinez CR, Uribe JS (2012) Movement of abdominal structures on magnetic resonance imaging during positioning changes related to lateral lumbar spine surgery: a morphometric study: clinical article. J Neurosurg Spine 16:615–623.  https://doi.org/10.3171/2012.3.SPINE1210 CrossRefGoogle Scholar
  21. 21.
    Hu WK, He SS, Zhang SC, Liu YB, Li M, Hou TS, Ma XL, Wang J (2011) An MRI study of psoas major and abdominal large vessels with respect to the X/DLIF approach. Eur Spine J 20:557–562.  https://doi.org/10.1007/s00586-010-1609-1 CrossRefGoogle Scholar
  22. 22.
    Oikawa Y, Eguchi Y, Watanabe A, Orita S, Yamauchi K, Suzuki M, Sakuma Y, Kubota G, Inage K, Sainoh T, Sato J, Fujimoto K, Koda M, Furuya T, Matsumoto K, Masuda Y, Aoki Y, Takahashi K, Ohtori S (2017) Anatomical evaluation of lumbar nerves using diffusion tensor imaging and implications of lateral decubitus for lateral transpsoas approach. Eur Spine J 26:2804–2810.  https://doi.org/10.1007/s00586-017-5082-y CrossRefGoogle Scholar
  23. 23.
    Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM (2010) The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 23:223–228.  https://doi.org/10.1097/BSD.0b013e3181a9d540 CrossRefGoogle Scholar
  24. 24.
    O'Brien J, Haines C, Dooley ZA, Turner AW, Jackson D (2014) Femoral nerve strain at L4–L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine (Phila Pa 1976) 39:33–38.  https://doi.org/10.1097/BRS.0000000000000039 CrossRefGoogle Scholar
  25. 25.
    Davis TT, Bae HW, Mok JM, Rasouli A, Delamarter RB (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 93:1482–1487.  https://doi.org/10.2106/JBJS.J.00962 CrossRefGoogle Scholar
  26. 26.
    Guerin P, Obeid I, Gille O, Bourghli A, Luc S, Pointillart V, Cursolle JC, Vital JM (2011) Safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: a morphometric study. Surg Radiol Anat 33:665–671.  https://doi.org/10.1007/s00276-011-0798-6 CrossRefGoogle Scholar
  27. 27.
    Baniel J, Foster RS, Donohue JP (1995) Surgical anatomy of the lumbar vessels: implications for retroperitoneal surgery. J Urol 153:1422–1425CrossRefGoogle Scholar
  28. 28.
    Mirilas P, Skandalakis JE (2010) Surgical anatomy of the retroperitoneal spaces, part III: retroperitoneal blood vessels and lymphatics. Am Surg 76:139–144Google Scholar
  29. 29.
    Mirilas P, Skandalakis JE (2010) Surgical anatomy of the retroperitoneal spaces, part V: surgical applications and complications. Am Surg 76:358–364Google Scholar
  30. 30.
    Lolis E, Panagouli E, Venieratos D (2011) Study of the ascending lumbar and iliolumbar veins: surgical anatomy, clinical implications and review of the literature. Ann Anat 193:516–529.  https://doi.org/10.1016/j.aanat.2011.09.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kaissar Farah
    • 1
    • 2
    Email author
  • Henri-Arthur Leroy
    • 1
  • Melodie-Anne Karnoub
    • 1
  • Louis Obled
    • 1
  • Stephane Fuentes
    • 2
  • Richard Assaker
    • 1
  1. 1.Department of NeurosurgeryLille University HospitalLilleFrance
  2. 2.Department of Neurosurgery and Spine UnitLa Timone University HospitalMarseilleFrance

Personalised recommendations