European Spine Journal

, Volume 28, Issue 4, pp 710–718 | Cite as

A mouse model for the study of transplanted bone marrow mesenchymal stem cell survival and proliferation in lumbar spinal fusion

  • Ioan A. Lina
  • Wataru Ishida
  • Jason A. Liauw
  • Sheng-fu L. Lo
  • Benjamin D. Elder
  • Alexander Perdomo-Pantoja
  • Debebe Theodros
  • Timothy F. Witham
  • Christina HolmesEmail author
Original Article



Bone marrow aspirate has been successfully used alongside a variety of grafting materials to clinically augment spinal fusion. However, little is known about the fate of these transplanted cells. Herein, we develop a novel murine model for the in vivo monitoring of implanted bone marrow cells (BMCs) following spinal fusion.


A clinical-grade scaffold was implanted into immune-intact mice undergoing spinal fusion with or without freshly isolated BMCs from either transgenic mice which constitutively express the firefly luciferase gene or syngeneic controls. The in vivo survival, distribution and proliferation of these luciferase-expressing cells was monitored via bioluminescence imaging over a period of 8 weeks and confirmed via immunohistochemistry. MicroCT imaging was performed 8 weeks to assess fusion.


Bioluminescence imaging indicated transplanted cell survival and proliferation over the first 2 weeks, followed by a decrease in cell numbers, with transplanted cell survival still evident at the end of the study. New bone formation and increased fusion mass volume were observed in mice implanted with cell-seeded scaffolds.


By enabling the tracking of transplanted bone marrow-derived cells during spinal fusion in vivo, this mouse model will be integral to developing a deeper understanding of the biological processes underlying spinal fusion in future studies.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Spinal fusion Mouse model Bone marrow Luciferase Mesenchymal stem cell 



Work in the Spinal Fusion Laboratory is supported by The Gordon and Marilyn Macklin Foundation and the AO Foundation (Grant No. S-16-59H).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

586_2018_5839_MOESM1_ESM.pptx (674 kb)
Supplementary material 1 (PPTX 673 kb)


  1. 1.
    Kitchel SH (2006) A preliminary comparative study of radiographic results using mineralized collagen and bone marrow aspirate versus autologous bone in the same patients undergoing posterior lumbar interbody fusion with instrumented posterolateral lumbar fusion. Spine J 6:405–411. CrossRefGoogle Scholar
  2. 2.
    Neen D, Noyes D, Shaw M et al (2006) Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine (Phila Pa 1976) 31:E636–E640. CrossRefGoogle Scholar
  3. 3.
    Salamanna F, Sartori M, Brodano GB et al (2017) Mesenchymal stem cells for the treatment of spinal arthrodesis: from preclinical research to clinical scenario. Stem Cells Int 2017:1–27. CrossRefGoogle Scholar
  4. 4.
    Robbins MA, Haudenschild DR, Wegner AM, Klineberg EO (2017) Stem cells in spinal fusion. Glob Spine J 7:801–810. CrossRefGoogle Scholar
  5. 5.
    Grayson WL, Bunnell BA, Martin E et al (2015) Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11:140–150. CrossRefGoogle Scholar
  6. 6.
    Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S (2009) Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 84:893–902. CrossRefGoogle Scholar
  7. 7.
    Šponer P, Kučera T, Diaz-Garcia D, Filip S (2014) The role of mesenchymal stem cells in bone repair and regeneration. Eur J Orthop Surg Traumatol 24:257–262. CrossRefGoogle Scholar
  8. 8.
    Bobyn J, Rasch A, Little DG, Schindeler A (2013) Posterolateral inter-transverse lumbar fusion in a mouse model. J Orthop Surg Res 8:2. CrossRefGoogle Scholar
  9. 9.
    Rao RD, Bagaria VB, Cooley BC (2007) Posterolateral intertransverse lumbar fusion in a mouse model: surgical anatomy and operative technique. Spine J 7:61–67. CrossRefGoogle Scholar
  10. 10.
    Kolind M, Bobyn JD, Matthews BG et al (2015) Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation. Bone 81:53–59. CrossRefGoogle Scholar
  11. 11.
    Cao Y-A, Wagers AJ, Beilhack A et al (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 101:221–226. CrossRefGoogle Scholar
  12. 12.
    Cao Y-A, Bachmann MH, Beilhack A et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80:134–139CrossRefGoogle Scholar
  13. 13.
    Sheikh AY, Lin S-A, Cao F et al (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells 25:2677–2684. CrossRefGoogle Scholar
  14. 14.
    Lina IA, Puvanesarajah V, Liauw JA et al (2014) Quantitative study of parathyroid hormone (1-34) and bone morphogenetic protein-2 on spinal fusion outcomes in a rabbit model of lumbar dorsolateral intertransverse process arthrodesis. Spine (Phila Pa 1976) 39:347–355. CrossRefGoogle Scholar
  15. 15.
    Qiao H, Zhang R, Gao L et al (2016) Molecular imaging for comparison of different growth factors on bone marrow-derived mesenchymal stromal cells’ survival and proliferation in vivo. Biomed Res Int 2016:1–10. CrossRefGoogle Scholar
  16. 16.
    Huang S, Xu L, Sun Y et al (2015) The fate of systemically administrated allogeneic mesenchymal stem cells in mouse femoral fracture healing. Stem Cell Res Ther 6:206. CrossRefGoogle Scholar
  17. 17.
    Geuze RE, Prins H-J, Öner FC et al (2010) Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats. Tissue Eng Part A 16:3343–3351. CrossRefGoogle Scholar
  18. 18.
    Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16:73–78. CrossRefGoogle Scholar
  19. 19.
    Kim JE, Kalimuthu S, Ahn B-C (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging (2010) 49:3–10. CrossRefGoogle Scholar
  20. 20.
    Manassero M, Paquet J, Deschepper M et al (2016) Comparison of survival and osteogenic ability of human mesenchymal stem cells in orthotopic and ectopic sites in mice. Tissue Eng Part A 22:534–544. CrossRefGoogle Scholar
  21. 21.
    Todeschi MR, El Backly R, Capelli C et al (2015) Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev 24:1570–1581. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ioan A. Lina
    • 1
  • Wataru Ishida
    • 2
  • Jason A. Liauw
    • 2
  • Sheng-fu L. Lo
    • 2
  • Benjamin D. Elder
    • 3
  • Alexander Perdomo-Pantoja
    • 2
  • Debebe Theodros
    • 2
  • Timothy F. Witham
    • 2
  • Christina Holmes
    • 2
    Email author
  1. 1.Department of OtolaryngologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeurosurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Neurological SurgeryMayo Clinic School of MedicineRochesterUSA

Personalised recommendations