Advertisement

Biochemical changes in Curimbatá subjected to transport stress and exposed to an agricultural fair

  • Emerson Giuliani Durigon
  • Carine de Freitas Souza
  • Matheus Dellaméa Baldissera
  • Bernardo Baldisserotto
  • Tais Inês Zuffo
  • Fernanda Picoli
  • Sidinei Follmann
  • Diogo de Alcantara LopesEmail author
  • Aleksandro Schafer da SilvaEmail author
Original Article
  • 27 Downloads

Abstract

Fish known as Curimbatá (Prochilodus lineatus) suffered a reduction in natural stocks due to predatory fishing and environmental deterioration; these are among the reasons for increased interest in the inclusion of this species in agricultural fairs. The aim of this study was to evaluate whether transport and exposure to an agricultural fair alters plasma biochemical parameters in curimbatás. Blood samples were collected at 0 h (before transport), 10 h (end of transport), and 72 h (end of exposure to agricultural fair). Plasma cortisol levels increased after 72-h exposure to agricultural fair compared with initial collection (0 h). Plasma reactive oxygen species levels were lower in fish at 72-h exposure to agricultural fairs compared with those at initial collection, while plasma thiobarbituric acid reactive substances levels were higher after 10 h of transport than at initial collection (0 h). Plasma superoxide dismutase and glutathione S-transferase activities were lower after 10 h of transport than at initial collection, while plasma glutathione peroxidase activity was higher in fish exposed for 72 h at the agricultural fair compared with initial collection (0 h). Plasma total protein, albumin, and glucose levels were higher after 10 h of transport than at initial collection, while triglycerides levels were higher after 10 h of transport and 72-h exposure to the agricultural fair than at initial collection. The transport of these fish (average weight 209 g) for display agricultural fairs causes stress demonstrated by biochemical changes and increases in antioxidant enzyme activity, resulting in decreases of reactive oxygen species.

Keywords

Cortisol Oxidative stress Agricultural fairs Prochilodus lineatus 

Notes

Acknowledgements

We thank the Instituto Goio-En for its collaboration with biological material. Thanks to CAPES and CNPq for financial support.

Funding information

Thanks to CAPES and CNPq for financial support.

Compliance with ethical standards

This experiment was approved by the Animal Welfare Committee of the State University of Santa Catarina (UDESC).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. de Abreu JS, Sanabria-Ochoa AI, Gonçalves FD, Urbinati EC (2008) Stress responses of juvenile matrinxã (Brycon amazonicus) after transport in a closed system under different loading densities. Cienc Rural 38:1413–1417.  https://doi.org/10.1590/S0103-84782008000500034 CrossRefGoogle Scholar
  2. Ali SF, Lebel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxico. 113:637–648Google Scholar
  3. Andrade ES, Carvalho AFS, Ferreira MR, Paula FG, Rodrigues FS, Felizardo VO, Neto RVR, Murgas LDS (2014) Indutores hormonais na reprodução artificial de curimba (Prochilodus lineatus). Rev Bras Reprodução Anim 38:230–236Google Scholar
  4. Beutler E (1984) Superoxide dismutase. In: Beutler E (ed) Red cell metabolism. A manual of biochemical methods. Grune & Stratton, Philadelphia, PA, pp 83–85Google Scholar
  5. Camargo MMP, Fernandes MN, Martinez CBR (2009) How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat Toxicol 94:40–46.  https://doi.org/10.1016/j.aquatox.2009.05.017 CrossRefGoogle Scholar
  6. Dobšíková R, Svobodová Z, Bláhová J, Modrá H, Velíšek J (2009) The effect of transport on biochemical and haematological indices of common carp (Cyprinus carpio L.). Czech J Anim Sci 54:510–518.  https://doi.org/10.1007/s10695-008-9269-3 CrossRefGoogle Scholar
  7. Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, Martins CIM (2012) Cortisol and finfish welfare. Fish Physiol Biochem 38:163–188.  https://doi.org/10.1007/s10695-011-9568-y CrossRefGoogle Scholar
  8. FAO, Food and Agriculture Organization of the United Nations (2018) El estado mundial de la pesca y la acuicultura 2018. Roma. Licencia: CC BY-NC-SA 3.0 IGO. 233pGoogle Scholar
  9. Galhardo L, Oliveira R (2006) Bem-estar Animal: um Conceito Legítimo para Peixes? Rev Etol 8:51–61 Disponible in http://pepsic.bvsalud.org/pdf/reto/v8n1/v8n1a06.pdf Google Scholar
  10. Graeff A, Tomazelli A, De Leão Serafini R (2014) Influência da densidade do curimbatá (Prochilodus lineatus) como espécie principal de um policultivo de carpas (Cyprinideos). Rev Electron Vet 15:109–121 Disponible in http://www.veterinaria.org/revistas/redvet/n010114/011412.pdf Google Scholar
  11. Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB (1974) The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 71:3879–3882.  https://doi.org/10.1073/pnas.71.10.3879 CrossRefGoogle Scholar
  12. Hontela A (1998) Interrenal dysfunction in fish from contaminated sites: in vivo and in vitro assessment. Environ Toxicol Chem 17:44–48.  https://doi.org/10.1897/1551-5028(1998)017<0044:IDIFFC>2.3.CO;2 CrossRefGoogle Scholar
  13. IBGE, 2015. Instituto Brasileiro de Geografia e Estatística – IBGE, 2015. Pesquisa pecuária municipal (2015) Brasília: IBGE, vol. 43, 47 p. D. Disponible in https://www.ibge.gov.br
  14. Iwama GK, Afonso LOB, Todgham A, Ackerman P, Nakano K (2004) Are hsps suitable for indicating stressed states in fish ? J Exp Biol 207:15–19.  https://doi.org/10.1242/jeb.00707 CrossRefGoogle Scholar
  15. Janzen WJ, Duncan CA, Riley LG (2012) Cortisol treatment reduces ghrelin signaling and food intake in tilapia, Oreochromis mossambicus. Domest Anim Endocrinol 43:251–259.  https://doi.org/10.1016/j.domaniend.2012.04.003 CrossRefGoogle Scholar
  16. Jentzsch AM, Bachmann H, Furst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256.  https://doi.org/10.1002/ajpa.21646 CrossRefGoogle Scholar
  17. Leite LAR, Pelegrini LS, Agostinho BN, de Azevedo RK, Abdallah VD (2018) Biodiversity of the metazoan parasites of Prochilodus lineatus (Valenciennes, 1837) (Characiformes: Prochilodontidae) in anthropized environments from the Batalha River, São Paulo state, Brazil. Biota Neotrop 18.  https://doi.org/10.1590/1676-0611-bn-2017-0422
  18. Mattioli CC, Takata R, de Paes Leme FO, Costa DC, Melillo Filho R, de Souza e Silva W, Luz RK (2017) The effects of acute and chronic exposure to water salinity on juveniles of the carnivorous freshwater catfish Lophiosilurus alexandri. Aquaculture 481:255–266.  https://doi.org/10.1016/j.aquaculture.2017.08.016 CrossRefGoogle Scholar
  19. Melo DC, Oliveira DAA, Melo MM, Júnior DV, Teixeira EA, Guimarães SR (2009) Perfil proteico de tilápia nilótica chitralada (Oreochromis niloticus), submetida ao estresse crônico por hipóxia. Arq Bras Med Vet Zootec 61:1183–1190CrossRefGoogle Scholar
  20. Mendes JM, Inoue LAKA, de Jesus RS (2015) Influence of transport stress and slaughter method on rigor mortis of tambaqui (Colossoma macropomum). Brazilian J Food Technol 18:162–169.  https://doi.org/10.1590/1981-6723.1115 CrossRefGoogle Scholar
  21. Menezes CC, Da Fonseca MB, Loro VL, Santi A, Cattaneo R, Clasen B, Pretto A, Morsch VM (2011) Roundup effects on oxidative stress parameters and recovery pattern of Rhamdia quelen. Arch Environ Contam Toxicol 60:665–671.  https://doi.org/10.1007/s00244-010-9574-6 CrossRefGoogle Scholar
  22. Modesto KA, Martinez CBR (2010) Effects of roundup transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787.  https://doi.org/10.1016/j.chemosphere.2010.07.005 CrossRefGoogle Scholar
  23. Nascimento CRB, Souza MM, Martinez CBR (2012) Copper and the herbicide atrazine impair the stress response of the freshwater fish Prochilodus lineatus. Comp Biochem Physiol Part C 155:456–461.  https://doi.org/10.1016/j.cbpc.2011.12.002 Google Scholar
  24. Oyakawa, O.T., Menezes, N.A., Shibatta, O.A., Lima, F.C.T., Langeani, F., Pavanelli, C.S., Nielsen, D.T.B. & Hilsdorf, A.W.S. (2009). Peixes de Água Doce. In: Bressan, P.M., Kierulff, M.C.M. & Sugieda, A.M. (Coord.). Fauna Ameaçada de Extinção no Estado de São Paulo. Fundação Parque Zoológico de São Paulo, Ministério do Meio Ambiente, São Paulo, 349-424Google Scholar
  25. Pankhurst NW (2011) The endocrinology of stress in fish: an environmental perspective. Gen Comp Endocrinol 170:265–275.  https://doi.org/10.1016/j.ygcen.2010.07.017 CrossRefGoogle Scholar
  26. Peixe BR, Anuário peixe BR da piscicultura (2018) São Paulo, 2 ed. 140p. 2018. Disponível em: <http://www.peixebr.com.br>. Acesso em: 11 de nov. 2018
  27. Pereira GJM, Murgas LDS, Silva J, Miliorini AB, Logato PVR, Lima D (2009) Indução da desova de curimba (Prochilodus lineatus) utilizando ECG e EBHC. Rev Ceres 56:156–160Google Scholar
  28. Refaey MM, Tian X, Tang R, Li D (2017) Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress. Aquaculture 478:9–15.  https://doi.org/10.1016/j.aquaculture.2017.01.026 CrossRefGoogle Scholar
  29. Sena AC, Teixeira RR, Ferreira EL, Heinzmann BM, Baldisserotto B, Caron BO, Schmidt D, Couto RD, Copatti CE (2016) Essential oil from Lippia alba has anaesthetic activity and is effective in reducing handling and transport stress in tambacu (Piaractus mesopotamicus × Colossoma macropomum). Aquaculture 465:374–379.  https://doi.org/10.1016/j.aquaculture.2016.09.033 CrossRefGoogle Scholar
  30. Sinhorin VDG, Sinhorin AP, dos Teixeira JMS, Miléski KML, Hansen PC, Moreira PSA, Kawashita NH, Baviera AM, Loro VL (2014) Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol Environ Saf 106:181–187.  https://doi.org/10.1016/j.ecoenv.2014.04.040 CrossRefGoogle Scholar
  31. Souza M, Rodrigues RA, Nunes AL, Mayra A, Fantini LE (2013) Effect of menthol and eugenol on the physiological responses of pacu Piaractus mesopotamicus. Semin. Ciências Agrárias 35:2799–2808.  https://doi.org/10.5433/1679-0359.2014v35n4Suplp2799 Google Scholar
  32. Vieira CED, Costa PG, Lunardelli B, de Oliveira LF, da Costa Cabrera L, Risso WE, Primel EG, Meletti PC, Fillmann G, dos Bueno Reis Martinez C (2016) Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil. Sci Total Environ 542:44–56.  https://doi.org/10.1016/j.scitotenv.2015.10.071 CrossRefGoogle Scholar
  33. Vijayan MM, Pereira C, Grau EG, Iwama GK (1997) Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp Biochem Physiol 116:89–95.  https://doi.org/10.1016/S0742-8413(96)00124-7 CrossRefGoogle Scholar
  34. Wen B, Jin SR, Chen ZZ, Gao JZ (2018) Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics. Sci Total Environ 640–641:1372–1381.  https://doi.org/10.1016/j.scitotenv.2018.05.401 CrossRefGoogle Scholar
  35. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333.  https://doi.org/10.1016/S0076-6879(81)77046-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Emerson Giuliani Durigon
    • 1
  • Carine de Freitas Souza
    • 2
  • Matheus Dellaméa Baldissera
    • 2
  • Bernardo Baldisserotto
    • 2
  • Tais Inês Zuffo
    • 1
  • Fernanda Picoli
    • 1
  • Sidinei Follmann
    • 3
  • Diogo de Alcantara Lopes
    • 1
    Email author
  • Aleksandro Schafer da Silva
    • 1
    Email author
  1. 1.Department of Animal Science, Graduate Program in Animal ScienceUniversidade do Estado de Santa CatarinaChapecóBrazil
  2. 2.Department of Physiology and PharmacologyUniversidade Federal de Santa MariaRio Grande do SulBrazil
  3. 3.Instituto Goio-EnÁguas de ChapecóBrazil

Personalised recommendations