Oxidative stress and stroke: a review of upstream and downstream antioxidant therapeutic options

  • Detelina KomsiiskaEmail author
Review Article


The stroke is a cerebrovascular disorder and is the cause of a second mortality and long-lasting harm worldwide. It is classified into two types: hemorrhagic and ischemic stroke. Globally, 13% of cases of stroke are hemorrhagic, while the remaining 87% are ischemic. In this paper, we discuss the consideration of factors which possibly affect the effectiveness of antioxidant protection under oxygen deprivation, as well as oxidative stress. Such aspects as compartmentalization of reactive oxygen species (ROS)/reactive nitrogen species (RNS) formation and antioxidant localization, synthesis and transport of antioxidants, and ability to induce the antioxidant defense and cooperation (and/or compensation) between different antioxidant systems are the determinants of the competence of the antioxidant system. Overall, we describe the antioxidants, which interact with ROS and RNS, and terminated the chain reaction before vital molecules have been injured.


Stroke Ischemic Hemorrhagic α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptor) ROS Oxidative stress 



This study was funded by University scientific project no. 1/2015 of Medical faculty, Trakia University, Bulgaria.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdel-Aleem G, Khaleel E, Mostafa D et al (2016) Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 122(4):200–213CrossRefGoogle Scholar
  2. Aggarwal A, Gaur V, Kumar A (2010) Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sci 86:928–935CrossRefGoogle Scholar
  3. Angelova M, Kovachev E, Kisyov ST et al (2015) A case of unicornuate uterus with atypical located hyperstimulated ovary after in vitro fertilization pre-embryo transfer (IVF-ET). OA Maced J Med 3:420–429CrossRefGoogle Scholar
  4. Angelova M, Todorov I, Kovachev E (2016) Clinical significance of ultrasound diagnosed placental lakes. Int J Curr Res 8:342–348Google Scholar
  5. Arteaga O, Álvarez A, Revuelta M et al (2017) Role of antioxidants in neonatal hypoxic–ischemic brain injury: new therapeutic approaches. Int J Mol Sci 18:265–271CrossRefGoogle Scholar
  6. Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294(1–2):137–144CrossRefGoogle Scholar
  7. Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243CrossRefGoogle Scholar
  8. Barber P (2013) Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit. Sensors 13:6981–7003CrossRefGoogle Scholar
  9. Bellone J (2016) Neuropsychological effects of pomegranate supplementation following ischemic stroke Doctoral dissertation, Loma Linda UniversityGoogle Scholar
  10. Benetos A, Rossignol P, Cherubini A et al (2015) Polypharmacy in the aging patient: management of hypertension in octogenarians. JAMA 314:170–180CrossRefGoogle Scholar
  11. Berg J, Tymoczko J, Stryer L (2002) Biochemistry, 5th edn. New York, W H freeman section 18.2, Oxidative phosphorylation depends on electron transfer. Available from:
  12. Birben E, Sahiner U, Sackesen C, Erzurum S, Kalayci O (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1): 9Google Scholar
  13. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappab is a key event in brain tolerance. J Neurosci 21:4668–4677CrossRefGoogle Scholar
  14. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2002) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neurosci 109:231–241CrossRefGoogle Scholar
  15. Brown D, Griendling K (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circulation Res 116:531–542CrossRefGoogle Scholar
  16. Bruschi G, Borghetti A (2013) Cellular aspects of hypertension. Springer Science & Business Media, BerlinGoogle Scholar
  17. Buganová M (2008) Hemoprotein Nitric Oxide Synthase. In: Aplysia Californica 1 Faculty of Medicine, Department of Paediatrics Charles University, Prague, PhD thesisGoogle Scholar
  18. Cai W, Liu H, Zhao J (2016) Pericytes in brain injury and repair after ischemic stroke. Translat. Stroke Res:1–15Google Scholar
  19. Caplan LR, Liebeskind DS (2016) Chapter 2 - Pathology, anatomy, and pathophysiology of stroke, Caplan's Stroke: A Clinical Approach. Cambridge University Press, 19–54Google Scholar
  20. Carrascosa-Romero M, De Cabo-de la Vega C (2014) Neuroprotection in perinatal hypoxic-ischemic encephalopathy–pharmacologic combination therapy. Cerebr. Palsy–Challeng for the Future. InTech, RijekaGoogle Scholar
  21. Dakov N, Kostova S, Iv T (2018) Selective laser trabeculoplasty in primary open angle glaucoma—efficiency and correlated parameters. C R Acad Bulg Sci 71(2):288–298Google Scholar
  22. Dashnaw ML, Petraglia AL, Patel JH (2015) Neurotrauma, pharmacological considerations. Encyclopedia of Trauma Care 1068–1075Google Scholar
  23. de Ribeiro Pinho MA (2014) Myocardial effect of Intermedin in hypertrophic heart: mechanisms and involvement of endothelial dysfunction. Faculdade de Ciencias, Universidade do PortoGoogle Scholar
  24. del Arco A, Contreras L, Pardo B (2016) Calcium regulation of mitochondrial carriers. Biochim Biophys Acta 1863:2413–2421CrossRefGoogle Scholar
  25. Dlamini L, Tata C, Djuidje M et al (2019) Antioxidant and prooxidant effects of Piptadeniastrum Africanum as the possible rationale behind its broad scale application in African ethnomedicine. J Ethnopharmacol 231:429–437CrossRefGoogle Scholar
  26. Doyle K, Simon R, Stenzel-Poore M (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–321CrossRefGoogle Scholar
  27. Eady T, Belayev L, Khoutorova L et al (2012) Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. PLoS One 7(10):e46151CrossRefGoogle Scholar
  28. Eelen G, de Zeeuw P, Simons M et al (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116:1231–1241CrossRefGoogle Scholar
  29. Falkowska A, Gutowska I, Goschorska M et al (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Intern J Mol Sci 16:25959–25968CrossRefGoogle Scholar
  30. Fazel Nabavi S, Dean M, Turner O et al (2015) Oxidative stress and post-stroke depression: possible therapeutic role of polyphenols? Curr Med Chem 22(3):343–351CrossRefGoogle Scholar
  31. Feigin VL, Norrving B, Mensah GA (2017) Global burden of stroke. Circ Res 120(3):439–448CrossRefGoogle Scholar
  32. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1597CrossRefGoogle Scholar
  33. Gadjeva V, Grigorov B, Nikolova G et al (2013) Protective effect of spin labeled 1-ethyl-1-nitrosourea against oxidative stress in liver induced by antitumor drus and radiation. BioMedResIntern 2013:924870–924879Google Scholar
  34. Gandhi S, Abramov A (2012) Mechanism of oxidative stress in neuro-degeneration. Oxidative Med Cell Longev 2012:11CrossRefGoogle Scholar
  35. Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL (2007) Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the trek1 potassium channel: the endothelial link. EMBO Rep 8:354–359CrossRefGoogle Scholar
  36. Georgieva E, Karamalakova Y, Nikolova G, Grigorov B, Pavlov D, Gadjeva V, Zheleva A (2012) Radical scavenging capacity of seeds and leaves ethanol extracts of Cynara scolymus L—a comparative study. Biotechnol Biotechnol Equip 26(1):151–155CrossRefGoogle Scholar
  37. Georgieva E, Zhelev Z, Aoki I et al (2016) Detection of redox imbalance in normal lymphocytes with induced mitochondrial dysfunction—EPR study. Anticancer Res 36:5273–5292CrossRefGoogle Scholar
  38. Georgieva E, Ivanova D, Zhelev Z et al (2017) Mitochondrial dysfunction and redox imbalance as a diagnostic marker of free radical diseases. Anticancer Res 37:5373–5386Google Scholar
  39. Görlach A, Dimova E, Petry A et al (2015) Reactive oxygen species, nutrition, hypoxia and diseases: problems solved? Redox Biol 6:372–389CrossRefGoogle Scholar
  40. Gusev E, Skvortsov V (2003) Strategies and prospects for development of neuroprotective therapy for brain ischemia. Brain Ischemia Springer, Boston 369CrossRefGoogle Scholar
  41. Halliwell B, Gutteridge J (2015) Free radicals in biology and medicine. Oxford University Press, CaryCrossRefGoogle Scholar
  42. Hamrick S, McQuillen P, Jiang X et al (2005a) A role for hypoxia-inducible factor-1α in desferoxamine neuroprotection. Neurosci Lett 379:96–100CrossRefGoogle Scholar
  43. Hamrick S, McQuillen P, Jiang X et al (2005b) A role for hypoxia-inducible factor-1α in desferoxamine neuroprotection. Neurosci Lett 379:96–100CrossRefGoogle Scholar
  44. Heiss W (2014) Radionuclide imaging in ischemic stroke. J Nucl Med 55:1831–1848CrossRefGoogle Scholar
  45. Hong S, Khoutorova L, Bazan N et al (2015) Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med 7:3CrossRefGoogle Scholar
  46. Josephy P, Mannervik B (2006) Molecular toxicology Oxford Univ Press on DemandGoogle Scholar
  47. Kalogeris T, Bao Y, Korthuis R (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Boil 2:702–724CrossRefGoogle Scholar
  48. Karamalakova Y, Nikolova G, Adhikari M et al (2018) Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. Comp Clin Pathol:1–9Google Scholar
  49. Leng T, Shi Y, Xiong Z et al (2014) Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 115:189–204CrossRefGoogle Scholar
  50. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5071CrossRefGoogle Scholar
  51. Lubrano V, Balzan S (2015) Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J Exp Med 5:218–226CrossRefGoogle Scholar
  52. Marin S, Haas R (2015) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Mitochondr case stud.: Underlying mech and diagn 13Google Scholar
  53. McCoin C, Knotts T, Ono-Moore K et al (2015) Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and-independent effects. Am J Physiol Endocrinol Metab 308:990–1000CrossRefGoogle Scholar
  54. Mehta S, Vemuganti R (2014) Mechanisms of stroke induced neuronal death: multiple therapeutic opportunities. Adv Anim Vet Sci 2:438–446CrossRefGoogle Scholar
  55. Mihaylova B, Petkova I, Rankova-Yotova C et al (2017) Plasma endothelin-1 and endothelin—a receptor concentrations in patients with primary open-angle glaucoma. Biotechnol Biotechnol Equip 31(4):782–787Google Scholar
  56. Mobarra N, Shanaki M, Ehteram H et al (2016) A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Stem Cell Res 10:239–247Google Scholar
  57. Nguemeni C, Delplanque B, Rovere C et al (2010) Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 61(3):226–233CrossRefGoogle Scholar
  58. Niizuma K, Niizuma H, Yoshioka H et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:92–99CrossRefGoogle Scholar
  59. Nikolova G, Mancheva V (2013) Analysis of the parameters of oxidative stress in patients with Parkinson’s disease. Comp Clin Pathol 22(2):151–155CrossRefGoogle Scholar
  60. Nikolova G, Karamalakova Y, Kovacheva N, Stanev S, Zheleva A, Gadjeva V (2016) Protective effect of two essential oils isolated from Rosa damascena Mill. and Lavandula angustifolia Mill, and two classic antioxidants against L-dopa oxidative toxicity induced in healthy mice. Regul Toxicol Pharmacol 81:1–7CrossRefGoogle Scholar
  61. Nikolova G, Ivanova D, Karamalakova Y et al (2018a) In vitro Electron paramagnetic resonance (EPR) spectroscopy studies on radical scavenging abilities of Haberlea Rhodopensis leaves extract. Comptes Rendus De L Academie Bulgare Des Sciences 71(6):780–786Google Scholar
  62. Nikolova G, Karamalakova Y, Mancheva V et al (2018b) Oxidative stress and related diseases. Part 2: Parkinson’s disease. Bulg Chem Commun 50(C):30–35Google Scholar
  63. Nikolova G, Ilieva V, Karamalakova Y et al (2018c) Oxidative stress and related diseases Part 1: Bronchial asthma. Bulg Chem Commun 50(C):30–35Google Scholar
  64. Nizamutdinov D, Shapiro L (2017) Overview of traumatic brain injury: an immunological context. Brain Sci 7:11–22CrossRefGoogle Scholar
  65. Okabe N, Nakamura T, Toyoshima T (2011) Eicosapentaenoic acid prevents memory impairment after ischemia by inhibiting inflammatory response and oxidative damage. J Stroke Cerebrovasc Dis 20(3):188–195CrossRefGoogle Scholar
  66. Orsu P, Murthy BVSN, Akula A (2013) Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. J Neural Transm 120(8):1217–1223CrossRefGoogle Scholar
  67. Ortega-Gutiérrez S, Garcıa J, Martınez-Balların E et al (2002) Melatonin improves deferoxamine antioxidant activity in protecting against lipid peroxidation caused by hydrogen peroxide in rat brain homogenates. Neurosci Lett 323:55–59CrossRefGoogle Scholar
  68. Oscar A, Cherninkova S, Haykin V, Aroyo A, Levi A, Marinov N, Kostova S, Elenkov C, Veleva N, Chernodrinska V, Petkova I, Spitzer J (2014) Amblyopia screening in Bulgaria. J Pediatr Ophthalmol Strabismus 51(5):284–288CrossRefGoogle Scholar
  69. Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, Chuang YH, Liao SL, Raung SL, Wu CW, Chiang AN, Chen CJ (2009) Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem 20(9):715–725CrossRefGoogle Scholar
  70. Peschillo S (2016) Frontiers in neurosurgery: brain ischemic stroke-from diagnosis to treatment. vol 3. Sharjah: Bentham Science Publishers.
  71. Pham-Huy L, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health intern. J Biomed Sci 4:89–99Google Scholar
  72. Phaniendra A, Jestadi D, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–19CrossRefGoogle Scholar
  73. Poprac P, Jomova K, Simunkova M et al (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607CrossRefGoogle Scholar
  74. Qu J, Chen W, Hu R et al (2016) The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria. Oxidative Med Cell Longev.
  75. Rahal A, Kumar A, Singh V et al (2014, 2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int:761264Google Scholar
  76. Ramos E, Patiño P, Reiter R et al (2010) Poststroke depression: a review. Can J Psychiatr Rev Can Psychiatr 55:341–352CrossRefGoogle Scholar
  77. Reiter R, Tan D, Osuna C et al (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Sci 7:444–458CrossRefGoogle Scholar
  78. Reiter R, Tan D, Mayo J et al (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50(4):1129–1146Google Scholar
  79. Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36(12):2352–2362CrossRefGoogle Scholar
  80. Rodriguez C, Mayo J, Sainz R et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9CrossRefGoogle Scholar
  81. Rosa A, Rapoport S (2009) Intracellular- and extracellular-derived Ca2+ influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta 1791:697–708CrossRefGoogle Scholar
  82. Rosen J, Than N, Koch D et al (2006) Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 41(4):374–381CrossRefGoogle Scholar
  83. Rueda C, Llorente-Folch I, Traba J et al (2016) Glutamate excitotoxicity and Ca2+−regulation of respiration: role of the Ca2+ activated mitochondrial transporters (CaMCs). Biochim Biophys Acta 1857:1158CrossRefGoogle Scholar
  84. Santos JA, de Carvaho GSG, Oliveira V et al (2013) Resveratrol and analogues: a review of antioxidant activity and applications to human health. Recent Pat Food Nutr Agric 5(2):144–153CrossRefGoogle Scholar
  85. Semyanov A, Verkhratsky A (2016) Ionic signalling in neuronal-astroglial interactions. Opera Medica et Physiologica 2:153Google Scholar
  86. Spence J, Bang H, Chambless L, Stampfer M (2005) Vitamin intervention for stroke prevention trial. Stroke 36:2404–2409CrossRefGoogle Scholar
  87. Srienc AI, Biesecker KR, Shimoda AM, Kur J, Newman EA (2016) Ischemia-induced spreading depolarization in the retina. J Cereb Blood Flow Metab 36(9):1579–1591CrossRefGoogle Scholar
  88. Stafford N, Wilson C, Oceandy D et al (2017) The plasma membrane calcium atpases and their role as major new players in human disease. Physiol Rev 97:1089–1125CrossRefGoogle Scholar
  89. Stolp H, Liddelow S, Sá-Pereira I et al (2013) Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 7:61–69CrossRefGoogle Scholar
  90. Tan D, Manchester L, Terron M et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42CrossRefGoogle Scholar
  91. Toader A, Filip A, Decea N et al (2013) Neuroprotective strategy in an experimental newborn rat model of brain ischemia and hypoxia: effects of resveratrol and hypothermia. Clujul Med 86:203–207Google Scholar
  92. Toth P, Tarantini S, Tucsek Z et al (2014) Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 306(3):H299–H308CrossRefGoogle Scholar
  93. Ueda M, Inaba T, Nito C (2013) Therapeutic impact of eicosapentaenoic acid on ischemic brain damage following transient focal cerebral ischemia in rats. Brain Res 1519:95–104CrossRefGoogle Scholar
  94. Yang Y, Tang L, Wei W (2013) Prostanoids receptors signaling in different diseases/cancers progression. J Recept Signal Transduct Res 33:14CrossRefGoogle Scholar
  95. Yao C, Zhang J, Chen F et al (2013) Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways. Mol Med Rep 8(2):543–550CrossRefGoogle Scholar
  96. Yousuf S, Atif F, Ahmad M et al (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253CrossRefGoogle Scholar
  97. Zheleva A, Karamalakova Y, Nikolova G, Kumar R, Sharma R, Gadjeva V (2012) A new antioxidant with natural origin characterized by electron paramagnetic resonance spectroscopy methods. Biotechnol Biotechnol Equip 26(1):146–150CrossRefGoogle Scholar
  98. Zheleva A, Nikolova G, Karamalakova Y, Hristakieva E, Lavcheva R, Gadjeva V (2018) Comparative study on some oxidative stress parameters in blood of vitiligo patients before and after combined therapy. Regul Toxicol Pharmacol 94:234–239CrossRefGoogle Scholar
  99. Zhou XM, Zhou ML, Zhang XS, Zhuang Z, Li T, Shi JX, Zhang X (2014) Resveratrol prevents neuronal apoptosis in an early brain injury model. J Surg Res 189(1):159–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology and Psychiatry, Medical FacultyTrakia University HospitalStara ZagoraBulgaria

Personalised recommendations