Applications of fluorescence in situ hybridization in detection of disease biomarkers and personalized medicine
- 109 Downloads
Abstract
Fluorescence in situ hybridization (FISH) method, as a molecular technique, is applicable for studying the gene expression during the cell differentiation, capturing images from the chromosomes/chromatin’s areas in interphase, and detecting the chromosomal abnormality and rearrangements. This potential and impressive technique with high sensitivity and specificity could detect the biomarkers of various diseases. Therefore, it is very useful for accelerating therapy and enhancing the prognosis of the disease. A glimpse at this molecular technique and focus on its effective applications confirm it as a supreme tool for clinical diagnosis and principles of personalized medicine.
Keywords
Fluorescence in situ hybridization Biomarker Genetic aberrations Infectious diseases Gastrointestinal diseases CancersNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
References
- Ablain J, de The H (2011) Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117(22):5795–5802. https://doi.org/10.1182/blood-2011-02-329367 Google Scholar
- Advani PP, Crozier JA, Perez EA (2015) HER2 testing and its predictive utility in anti-HER2 breast cancer therapy. Biomark Med 9(1):35–49. https://doi.org/10.2217/bmm.14.95 Google Scholar
- Ahmady M, Kazemi S (2013) Detection of the enterotoxigenic genes (sei, sej) in Staphylococcus Aureus isolates from bovine mastitis milk in the West Azerbaijan of Iran. Comp Clin Path 22(4):649–654. https://doi.org/10.1007/s00580-012-1460-3 Google Scholar
- Andres RJ, Kuraparthy V (2013) Development of an improved method of mitotic metaphase chromosome preparation compatible for fluorescence in situ hybridization in cotton. J Cotton Sci 17:149–156Google Scholar
- Bauman JG, Wiegant J, Borst P, van Duijn P (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp Cell Res 128(2):485–490. https://doi.org/10.1016/0014-4827(80)90087-7 Google Scholar
- Beekman SE, Diekema DJ, Chapin KC, Doern GV (2003) Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol 41(7):3119–3125. https://doi.org/10.1128/JCM.41.7.3119-3125.2003 Google Scholar
- Bishop R (2010) Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horiz 3(1):85–95. https://doi.org/10.1093/biohorizons/hzq009 Google Scholar
- Cao M, Li T, He Z, Wang L, Yang X, Kou Y, Zou L, Dong X, Novakovic VA, Bi Y, Kou J, Yu B, Fang S, Wang J, Zhou J, Shi J (2017) Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia. Blood 129(13):1855–1864. https://doi.org/10.1182/blood-2016-09-739334 Google Scholar
- Cerqueira L, Fernandes RM, Ferreira RM, Oleastro M, Carneiro F, Brandão C, Pimentel-Nunes P, Dinis-Ribeiro M, Figueiredo C, Keevil CW, Vieira MJ, Azevedo NF (2013) Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J Clin Microbiol 51(6):1887–1893. https://doi.org/10.1128/JCM.00302-13 Google Scholar
- Cho EH, Park BY, Cho JH, Kang YS (2009) Comparing two diagnostic laboratory tests for several micro deletions causing mental retardation syndromes: multiplex ligation-dependent amplification vs fluorescent in situ hybridization. Korean J Lab Med 29(1):71–76. https://doi.org/10.3343/kjlm.2009.29.1.71 Google Scholar
- Crutchley JL, Wang XQ, Ferraiuolo MA, Dostie J (2010) Chromatin conformation signatures: ideal human disease biomarkers? Biomark Med 4(4):611–629. https://doi.org/10.2217/bmm.10.68 Google Scholar
- Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89Google Scholar
- Darby IA, Bisucci T, Desmoulière A, Hewitson TD (2006) In situ hybridization using cRNA probes: isotopic and nonisotopic detection methods. Methods Mol Biol 326:17–31. https://doi.org/10.1385/1-59745-007-3:17 Google Scholar
- Dunagin M, Cabili MN, Rinn J, Raj A (2015) Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol Biol 1262:3–19. https://doi.org/10.1007/978-1-4939-2253-6_1 Google Scholar
- Erlandsen SL, Jarroll E, Wallis P, Van Keulen H (2005) Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens. J Histochem Cytochem 53(8):917–927. https://doi.org/10.1369/jhc.5C6656.2005 Google Scholar
- Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ, Kay NE, Van Ness B, Greipp PR, Dewald GW (2001) Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15(6):981–986. https://doi.org/10.1038/sj.leu.2402125 Google Scholar
- Fontenete S, Barros J, Madureira P, Figueiredo C, Wengel J, Azevedo NF (2015) Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 99(9):3961–3969. https://doi.org/10.1007/s00253-015-6389-4 Google Scholar
- Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63(2):378–383. https://doi.org/10.1073/pnas.63.2.378 Google Scholar
- Gawde H, Patel ZM, Khatkhatey MI, D'Souza A, Babu S, Adhia R, Kerkar P (2006) Chromosome 22 microdeletion by FISH in isolated congenital heart disease. Indian J Pediatr 73(10):885–888. https://doi.org/10.1007/BF02859280 Google Scholar
- Gutiérrez NC, García JL, Hernández JM, Lumbreras E, Castellanos M, Rasillo A, Mateo G, Hernández JM, Pérez S, Orfao A, San Miguel JF (2004) Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma. Blood 104(9):2661–2666. https://doi.org/10.1182/blood-2004-04-1319 Google Scholar
- Gutierrez-Rodrigues F, Santana-Lemos BA, Scheucher PS, Alves-Paiva RM, Calado RT (2014) Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS One 9(11):e113747. https://doi.org/10.1371/journal.pone.0113747 Google Scholar
- Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F, Reiss M, Au JL, Haffty BG, Kang Y (2009) MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15(1):9–20. https://doi.org/10.1016/j.ccr.2008.11.013 Google Scholar
- Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W (2014) Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res 2(1):3–13. https://doi.org/10.1186/2050-7771-2-3 Google Scholar
- Ioannidis P, Mahaira L, Papadopoulou A, Teixeira MR, Heim S, Andersen JA, Evangelou E, Dafni U, Pandis N, Trangas T (2003) 8q24 copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in primary breast carcinomas. Int J Cancer 104(1):54–59. https://doi.org/10.1002/ijc.10794 Google Scholar
- Jansen FA, Blumenfeld YJ, Fisher A, Cobben JM, Odibo AO, Borrell A, Haak MC (2015) Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):27–35. https://doi.org/10.1002/uog.14695 Google Scholar
- Jensen E (2014) Technical review: in situ hybridization. Anat Rec 297(8):1349–1353. https://doi.org/10.1002/ar.22944 Google Scholar
- Jensen HE, Jensen LK, Barington K, Pors SE, Bjarnsholt T, Boye M (2015) Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections. Methods Mol Biol 1247:219–234. https://doi.org/10.1007/978-1-4939-2004-4_17 Google Scholar
- Kawano Y, Ishikawa N, Aida J, Sanada Y, Izumiyama-Shimomura N, Nakamura K, Poon SS, Matsumoto K, Mizuta K, Uchida E, Tajiri T, Kawarasaki H, Takubo K (2014) Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 9(4):e93749. https://doi.org/10.1371/journal.pone.0093749 Google Scholar
- Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2):830–838Google Scholar
- Kim TM, Yim SH, Lee JS, Kwon MS, Ryu JW, Kang HM, Fiegler H, Carter NP, Chung YJ (2005) Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 11(23):8235–4822. https://doi.org/10.1158/1078-0432.CCR-05-1157 Google Scholar
- Kim BR, Choi JL, Kim JE, Woo KS, Kim KH, Kim JM, Kim SH, Han JY (2014) Diagnostic utility of multi probe fluorescence in situ hybridization assay for detecting cytogenetic aberrations in acute leukemia. Ann Lab Med 34(3):198–202. https://doi.org/10.3343/alm.2014.34.3.198 Google Scholar
- de Klein A, Koopmans AE, Kilic E (2012) Multicolor FISH with improved sensitivity and specificity in the diagnosis of malignant melanoma. Expert Rev Mol Diagn 12(7):683–685. https://doi.org/10.1586/erm.12.70 Google Scholar
- Kliot A, Kontsedalov S, Lebedev G, Brumin M, Cathrin PB, Marubayashi JM, Skaljac M, Belausov E, Czosnek H, Ghanim M (2014) Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues. J Vis Exp 24(84):e51030Google Scholar
- Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187. https://doi.org/10.1038/nrc746 Google Scholar
- Kumar A (2010) In situ hybridization. Int J Appl Biol Pharmaceutical Technol 1(2):418–430Google Scholar
- Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(14):2833–2838. https://doi.org/10.1242/jcs.00633 Google Scholar
- Madon PF, Athalye AS, Sanghavi K, Parikh FR (2010) Microdeletion syndromes detected by FISH–73 positive from 374 cases. Int J Hum Genet 10(1–3):15–20. https://doi.org/10.1080/09723757.2010.11886080 Google Scholar
- Makristathis A, Hirschl AM, Lehours P, Megraud F (2004) Diagnosis of helicobacter pylori infection. Helicobacter 9(suppl 1):7–14. https://doi.org/10.1111/j.1083-4389.2004.00254.x Google Scholar
- de Marchis EH, Swetter SM, Jennings CD, Kim J (2014) Fluorescence in situ hybridization analysis of atypical melanocytic proliferations and melanoma in young patients. Pediatr Dermatol 31(5):561–569. https://doi.org/10.1111/pde.12382 Google Scholar
- Marlowe EM, Hogan JJ, Hindler JF, Andruszkiewicz I, Gordon P, Bruckner DA (2003) Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J Clin Microbiol 41(11):5127–5133. https://doi.org/10.1128/JCM.41.11.5127-5133.2003 Google Scholar
- Mesquita B, Lopes P, Rodrigues A, Pereira D, Afonso M, Leal C, Henrique R, Lind GE, Jerónimo C, Lothe RA, Teixeira MR (2013) Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes. Breast Cancer Res Treat 138(1):37–45. https://doi.org/10.1007/s10549-013-2408-2 Google Scholar
- Minca EC, Al-Rohil RN, Wang M, Harms PW, Ko JS, Collie AM, Kovalyshyn I, Prieto VG, Tetzlaff MT, Billings SD, Andea AA (2016) Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions. Mod Pathol 29(8):832–843. https://doi.org/10.1038/modpathol.2016.84 Google Scholar
- Mohammadpour I, Bozorg-Ghalati F, Motazedian MH (2016) Molecular characterization and phylogenetic analysis of microsporidia and cryptosporidium spp. in patients with multiple bowel biopsies from Fars Province, Iran. Ann Parasitol 62(4):321–330. https://doi.org/10.17420/ap6204.68 Google Scholar
- Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Bueti G, Shah RB, Gaston S, Tomlins SA, Wei JT, Kearney MC, Johnson LA, Tang JM, Chinnaiyan AM, Rubin MA, Sanda MG (2009) Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 15(14):4706–4711. https://doi.org/10.1158/1078-0432.CCR-08-2927 Google Scholar
- Mylin AK, Goetze JP, Heickendorff L, Ahlberg L, Dahl IM, Abildgaard N, Gimsing P (2015) N-terminal pro-C-type natriuretic peptide in serum associated with bone destruction in patients with multiple myeloma. Biomark Med 9(7):679–689. https://doi.org/10.2217/bmm.15.35 Google Scholar
- Neumann S, Kaup FJ, Scheulen S (2012) Interleukin-6 (IL-6) serum concentrations in dogs with hepatitis and hepatic tumours compared with those with extra-hepatic inflammation and tumours. Comp Clin Path 21(5):539–544. https://doi.org/10.1007/s00580-010-1126-y Google Scholar
- Nguyen HT, Trouillon R, Matsuoka S, Fiche M, de Leval L, Bisig B, Gijs MA (2017) Microfluidics-assisted fluorescence in situ hybridization for advantageous human epidermal growth factor receptor 2 assessment in breast cancer. Lab Investig 97(1):93–103. https://doi.org/10.1038/labinvest.2016.121 Google Scholar
- Nijhawan RI, Votava HJ, Mariwalla K (2012) Clinical application and limitations of the fluorescence in situ hybridization (FISH) assay in the diagnosis and management of melanocytic lesions: a report of 3 cases. Cutis 90(4):189–195Google Scholar
- Norrgard K (2008) Diagnosing Down syndrome, cystic fibrosis, Tay-Sachs disease and other genetic disorders. Nat Educ 1(1):91–95Google Scholar
- Peters R-PH, Savelkoul P-HM, Simoons-Smit AM, Danner SA, Vandenbroucke-Grauls C-MJE, Agtmael M-A (2006) Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J Clin Microbiol 44(1):119–123. https://doi.org/10.1128/JCM.44.1.119-123.2006 Google Scholar
- Prakriti V, Madhu S, Uma C (2012) A comprehensive review of diagnostic techniques for detection of cryptosporidium parvum in stool samples. IOSR J Pharm 2(5):15–26Google Scholar
- Ranjbaran R, Okhovat MA, Abbasi M, Moezzi L, Aboualizadeh F, Amidzadeh Z, Golafshan HA, Behzad-Behbahani A, Sharifzadeh S (2016) Detection of t(9;22) b2a2 fusion transcript by flow cytometry. Int J Lab Hematol 38(4):403–411. https://doi.org/10.1111/ijlh.12515 Google Scholar
- Reboursiere E, Chantepie S, Gac AC, Reman O (2015) Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther 8(1):28–33. https://doi.org/10.1016/j.hemonc.2014.09.002 Google Scholar
- Rodriguez-Vicente AE, Diaz MG, Hernandez-Rivas JM (2013) Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 206(3):49–62. https://doi.org/10.1016/j.cancergen.2013.01.003 Google Scholar
- Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R (2013) Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 54(11):2351–2364. https://doi.org/10.3109/10428194.2013.783913 Google Scholar
- Sarkari B, Ashrafmansori A, Hatam GR, Motazedian MH, Asgari Q, Mohammadpour I (2012) Genotyping of giardia lamblia isolates from human in southern Iran. Trop Biomed 29(3):1–6Google Scholar
- Savic S, Bubendorf L (2012) Role of in situ hybridization in lung cancer cytology. Acta Cytol 56(6):611–621. https://doi.org/10.1159/000339792 Google Scholar
- Sawyer JR (2011) The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 204(1):3–12. https://doi.org/10.1016/j.cancergencyto.2010.11.002 Google Scholar
- Schmiedel D, Epple HJ, Loddenkemper C, Ignatius R, Wagner J, Hammer B, Petrich A, Stein H, Göbel UB, Schneider T, Moter A (2009) Rapid and accurate diagnosis of human intestinal spirochetosis by fluorescence in situ hybridization. J Clin Microbiol 47(5):1393–1401. https://doi.org/10.1128/JCM.02469-08 Google Scholar
- Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Croppinger J, Ballif BC (2007) The identification of micro deletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 145C(4):335–345. https://doi.org/10.1002/ajmg.c.30152 Google Scholar
- Sowjanya K, Carla M-R, Ronnie F (2013) Diagnostic tests for Helicobacter pylori. Gastroenterol Endosc News, pp 51–58Google Scholar
- Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347(15):1175–1186. https://doi.org/10.1056/NEJMra020542 Google Scholar
- Walker LC, McDonald M, Wells JE, Harris GC, Robinson BA, Morris CM (2013) Dual-color fluorescence in situ hybridization reveals an association of chromosome 8q22 but not 8p21 imbalance with high grade invasive breast carcinoma. PLoS One 8(7):e70790. https://doi.org/10.1371/journal.pone.0070790 Google Scholar
- Wan TS (2014) Cancer cytogenetics: methodology revisited. Ann Lab Med 34(6):413–425. https://doi.org/10.3343/alm.2014.34.6.413 Google Scholar
- Weickhardt AJ, Aisner DL, Franklin WA, Varella-Garcia M, Doebele RC, Camidge DR (2013) Diagnostic assays for identification of anaplastic lymphoma kinase-positive non-small cell lung cancer. Cancer 119(8):1467–1477. https://doi.org/10.1002/cncr.27913 Google Scholar
- Weissenböck H, Ondrovics M, Gurtner S, Schiessl P, Mostegl MM, Richter B (2011) Development of a chromogenic in situ hybridization for giardia duodenalis and its application in canine, feline, and porcine intestinal tissues samples. J Vet Diagn Investig 23(3):486–491. https://doi.org/10.1177/1040638711404151 Google Scholar
- Wippold FJ, Perry A (2007) Neuropathology for the neuroradiologist: fluorescence in situ hybridization. Am J Neuroradiol 28(3):406–410Google Scholar
- Ye CJ, Heng HH (2017) High resolution fiber-fluorescence in situ hybridization. Methods Mol Biol 1541:151–166. https://doi.org/10.1007/978-1-4939-6703-2_14 Google Scholar
- Yoshida A, Kohno T, Tsuta K, Wakai S, Arai Y, Shimada Y, Asamura H, Furuta K, Shibata T, Tsuda H (2013) ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol 37(4):554–562. https://doi.org/10.1097/PAS.0b013e3182758fe6 Google Scholar
- Zahedipour F, Ranjbaran R, Behzad-Behbahani A, Tavakol Afshari Kh, Okhovat MA, Tamadon GhH, Sharifzadeh S (2017) Development of flow cytometry-fluorescent in situ hybridization (Flow-FISH) method for detection of PML/RARa Chromosomal Translocation in acute promyelocytic leukemia cell line. Avicenna J Medical Biotech 9(2):104–108Google Scholar