Advertisement

Comparative Clinical Pathology

, Volume 28, Issue 1, pp 3–10 | Cite as

Applications of fluorescence in situ hybridization in detection of disease biomarkers and personalized medicine

  • Farzaneh Bozorg-GhalatiEmail author
  • Iraj Mohammadpour
  • Reza Ranjbaran
Review Article
  • 109 Downloads

Abstract

Fluorescence in situ hybridization (FISH) method, as a molecular technique, is applicable for studying the gene expression during the cell differentiation, capturing images from the chromosomes/chromatin’s areas in interphase, and detecting the chromosomal abnormality and rearrangements. This potential and impressive technique with high sensitivity and specificity could detect the biomarkers of various diseases. Therefore, it is very useful for accelerating therapy and enhancing the prognosis of the disease. A glimpse at this molecular technique and focus on its effective applications confirm it as a supreme tool for clinical diagnosis and principles of personalized medicine.

Keywords

Fluorescence in situ hybridization Biomarker Genetic aberrations Infectious diseases Gastrointestinal diseases Cancers 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ablain J, de The H (2011) Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117(22):5795–5802.  https://doi.org/10.1182/blood-2011-02-329367 Google Scholar
  2. Advani PP, Crozier JA, Perez EA (2015) HER2 testing and its predictive utility in anti-HER2 breast cancer therapy. Biomark Med 9(1):35–49.  https://doi.org/10.2217/bmm.14.95 Google Scholar
  3. Ahmady M, Kazemi S (2013) Detection of the enterotoxigenic genes (sei, sej) in Staphylococcus Aureus isolates from bovine mastitis milk in the West Azerbaijan of Iran. Comp Clin Path 22(4):649–654.  https://doi.org/10.1007/s00580-012-1460-3 Google Scholar
  4. Andres RJ, Kuraparthy V (2013) Development of an improved method of mitotic metaphase chromosome preparation compatible for fluorescence in situ hybridization in cotton. J Cotton Sci 17:149–156Google Scholar
  5. Bauman JG, Wiegant J, Borst P, van Duijn P (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp Cell Res 128(2):485–490.  https://doi.org/10.1016/0014-4827(80)90087-7 Google Scholar
  6. Beekman SE, Diekema DJ, Chapin KC, Doern GV (2003) Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol 41(7):3119–3125.  https://doi.org/10.1128/JCM.41.7.3119-3125.2003 Google Scholar
  7. Bishop R (2010) Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horiz 3(1):85–95.  https://doi.org/10.1093/biohorizons/hzq009 Google Scholar
  8. Cao M, Li T, He Z, Wang L, Yang X, Kou Y, Zou L, Dong X, Novakovic VA, Bi Y, Kou J, Yu B, Fang S, Wang J, Zhou J, Shi J (2017) Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia. Blood 129(13):1855–1864.  https://doi.org/10.1182/blood-2016-09-739334 Google Scholar
  9. Cerqueira L, Fernandes RM, Ferreira RM, Oleastro M, Carneiro F, Brandão C, Pimentel-Nunes P, Dinis-Ribeiro M, Figueiredo C, Keevil CW, Vieira MJ, Azevedo NF (2013) Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J Clin Microbiol 51(6):1887–1893.  https://doi.org/10.1128/JCM.00302-13 Google Scholar
  10. Cho EH, Park BY, Cho JH, Kang YS (2009) Comparing two diagnostic laboratory tests for several micro deletions causing mental retardation syndromes: multiplex ligation-dependent amplification vs fluorescent in situ hybridization. Korean J Lab Med 29(1):71–76.  https://doi.org/10.3343/kjlm.2009.29.1.71 Google Scholar
  11. Crutchley JL, Wang XQ, Ferraiuolo MA, Dostie J (2010) Chromatin conformation signatures: ideal human disease biomarkers? Biomark Med 4(4):611–629.  https://doi.org/10.2217/bmm.10.68 Google Scholar
  12. Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89Google Scholar
  13. Darby IA, Bisucci T, Desmoulière A, Hewitson TD (2006) In situ hybridization using cRNA probes: isotopic and nonisotopic detection methods. Methods Mol Biol 326:17–31.  https://doi.org/10.1385/1-59745-007-3:17 Google Scholar
  14. Dunagin M, Cabili MN, Rinn J, Raj A (2015) Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol Biol 1262:3–19.  https://doi.org/10.1007/978-1-4939-2253-6_1 Google Scholar
  15. Erlandsen SL, Jarroll E, Wallis P, Van Keulen H (2005) Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens. J Histochem Cytochem 53(8):917–927.  https://doi.org/10.1369/jhc.5C6656.2005 Google Scholar
  16. Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ, Kay NE, Van Ness B, Greipp PR, Dewald GW (2001) Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15(6):981–986.  https://doi.org/10.1038/sj.leu.2402125 Google Scholar
  17. Fontenete S, Barros J, Madureira P, Figueiredo C, Wengel J, Azevedo NF (2015) Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 99(9):3961–3969.  https://doi.org/10.1007/s00253-015-6389-4 Google Scholar
  18. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63(2):378–383.  https://doi.org/10.1073/pnas.63.2.378 Google Scholar
  19. Gawde H, Patel ZM, Khatkhatey MI, D'Souza A, Babu S, Adhia R, Kerkar P (2006) Chromosome 22 microdeletion by FISH in isolated congenital heart disease. Indian J Pediatr 73(10):885–888.  https://doi.org/10.1007/BF02859280 Google Scholar
  20. Gutiérrez NC, García JL, Hernández JM, Lumbreras E, Castellanos M, Rasillo A, Mateo G, Hernández JM, Pérez S, Orfao A, San Miguel JF (2004) Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma. Blood 104(9):2661–2666.  https://doi.org/10.1182/blood-2004-04-1319 Google Scholar
  21. Gutierrez-Rodrigues F, Santana-Lemos BA, Scheucher PS, Alves-Paiva RM, Calado RT (2014) Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS One 9(11):e113747.  https://doi.org/10.1371/journal.pone.0113747 Google Scholar
  22. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F, Reiss M, Au JL, Haffty BG, Kang Y (2009) MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15(1):9–20.  https://doi.org/10.1016/j.ccr.2008.11.013 Google Scholar
  23. Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W (2014) Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res 2(1):3–13.  https://doi.org/10.1186/2050-7771-2-3 Google Scholar
  24. Ioannidis P, Mahaira L, Papadopoulou A, Teixeira MR, Heim S, Andersen JA, Evangelou E, Dafni U, Pandis N, Trangas T (2003) 8q24 copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in primary breast carcinomas. Int J Cancer 104(1):54–59.  https://doi.org/10.1002/ijc.10794 Google Scholar
  25. Jansen FA, Blumenfeld YJ, Fisher A, Cobben JM, Odibo AO, Borrell A, Haak MC (2015) Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):27–35.  https://doi.org/10.1002/uog.14695 Google Scholar
  26. Jensen E (2014) Technical review: in situ hybridization. Anat Rec 297(8):1349–1353.  https://doi.org/10.1002/ar.22944 Google Scholar
  27. Jensen HE, Jensen LK, Barington K, Pors SE, Bjarnsholt T, Boye M (2015) Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections. Methods Mol Biol 1247:219–234.  https://doi.org/10.1007/978-1-4939-2004-4_17 Google Scholar
  28. Kawano Y, Ishikawa N, Aida J, Sanada Y, Izumiyama-Shimomura N, Nakamura K, Poon SS, Matsumoto K, Mizuta K, Uchida E, Tajiri T, Kawarasaki H, Takubo K (2014) Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 9(4):e93749.  https://doi.org/10.1371/journal.pone.0093749 Google Scholar
  29. Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2):830–838Google Scholar
  30. Kim TM, Yim SH, Lee JS, Kwon MS, Ryu JW, Kang HM, Fiegler H, Carter NP, Chung YJ (2005) Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 11(23):8235–4822.  https://doi.org/10.1158/1078-0432.CCR-05-1157 Google Scholar
  31. Kim BR, Choi JL, Kim JE, Woo KS, Kim KH, Kim JM, Kim SH, Han JY (2014) Diagnostic utility of multi probe fluorescence in situ hybridization assay for detecting cytogenetic aberrations in acute leukemia. Ann Lab Med 34(3):198–202.  https://doi.org/10.3343/alm.2014.34.3.198 Google Scholar
  32. de Klein A, Koopmans AE, Kilic E (2012) Multicolor FISH with improved sensitivity and specificity in the diagnosis of malignant melanoma. Expert Rev Mol Diagn 12(7):683–685.  https://doi.org/10.1586/erm.12.70 Google Scholar
  33. Kliot A, Kontsedalov S, Lebedev G, Brumin M, Cathrin PB, Marubayashi JM, Skaljac M, Belausov E, Czosnek H, Ghanim M (2014) Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues. J Vis Exp 24(84):e51030Google Scholar
  34. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187.  https://doi.org/10.1038/nrc746 Google Scholar
  35. Kumar A (2010) In situ hybridization. Int J Appl Biol Pharmaceutical Technol 1(2):418–430Google Scholar
  36. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(14):2833–2838.  https://doi.org/10.1242/jcs.00633 Google Scholar
  37. Madon PF, Athalye AS, Sanghavi K, Parikh FR (2010) Microdeletion syndromes detected by FISH–73 positive from 374 cases. Int J Hum Genet 10(1–3):15–20.  https://doi.org/10.1080/09723757.2010.11886080 Google Scholar
  38. Makristathis A, Hirschl AM, Lehours P, Megraud F (2004) Diagnosis of helicobacter pylori infection. Helicobacter 9(suppl 1):7–14.  https://doi.org/10.1111/j.1083-4389.2004.00254.x Google Scholar
  39. de Marchis EH, Swetter SM, Jennings CD, Kim J (2014) Fluorescence in situ hybridization analysis of atypical melanocytic proliferations and melanoma in young patients. Pediatr Dermatol 31(5):561–569.  https://doi.org/10.1111/pde.12382 Google Scholar
  40. Marlowe EM, Hogan JJ, Hindler JF, Andruszkiewicz I, Gordon P, Bruckner DA (2003) Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J Clin Microbiol 41(11):5127–5133.  https://doi.org/10.1128/JCM.41.11.5127-5133.2003 Google Scholar
  41. Mesquita B, Lopes P, Rodrigues A, Pereira D, Afonso M, Leal C, Henrique R, Lind GE, Jerónimo C, Lothe RA, Teixeira MR (2013) Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes. Breast Cancer Res Treat 138(1):37–45.  https://doi.org/10.1007/s10549-013-2408-2 Google Scholar
  42. Minca EC, Al-Rohil RN, Wang M, Harms PW, Ko JS, Collie AM, Kovalyshyn I, Prieto VG, Tetzlaff MT, Billings SD, Andea AA (2016) Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions. Mod Pathol 29(8):832–843.  https://doi.org/10.1038/modpathol.2016.84 Google Scholar
  43. Mohammadpour I, Bozorg-Ghalati F, Motazedian MH (2016) Molecular characterization and phylogenetic analysis of microsporidia and cryptosporidium spp. in patients with multiple bowel biopsies from Fars Province, Iran. Ann Parasitol 62(4):321–330.  https://doi.org/10.17420/ap6204.68 Google Scholar
  44. Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Bueti G, Shah RB, Gaston S, Tomlins SA, Wei JT, Kearney MC, Johnson LA, Tang JM, Chinnaiyan AM, Rubin MA, Sanda MG (2009) Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 15(14):4706–4711.  https://doi.org/10.1158/1078-0432.CCR-08-2927 Google Scholar
  45. Mylin AK, Goetze JP, Heickendorff L, Ahlberg L, Dahl IM, Abildgaard N, Gimsing P (2015) N-terminal pro-C-type natriuretic peptide in serum associated with bone destruction in patients with multiple myeloma. Biomark Med 9(7):679–689.  https://doi.org/10.2217/bmm.15.35 Google Scholar
  46. Neumann S, Kaup FJ, Scheulen S (2012) Interleukin-6 (IL-6) serum concentrations in dogs with hepatitis and hepatic tumours compared with those with extra-hepatic inflammation and tumours. Comp Clin Path 21(5):539–544.  https://doi.org/10.1007/s00580-010-1126-y Google Scholar
  47. Nguyen HT, Trouillon R, Matsuoka S, Fiche M, de Leval L, Bisig B, Gijs MA (2017) Microfluidics-assisted fluorescence in situ hybridization for advantageous human epidermal growth factor receptor 2 assessment in breast cancer. Lab Investig 97(1):93–103.  https://doi.org/10.1038/labinvest.2016.121 Google Scholar
  48. Nijhawan RI, Votava HJ, Mariwalla K (2012) Clinical application and limitations of the fluorescence in situ hybridization (FISH) assay in the diagnosis and management of melanocytic lesions: a report of 3 cases. Cutis 90(4):189–195Google Scholar
  49. Norrgard K (2008) Diagnosing Down syndrome, cystic fibrosis, Tay-Sachs disease and other genetic disorders. Nat Educ 1(1):91–95Google Scholar
  50. Peters R-PH, Savelkoul P-HM, Simoons-Smit AM, Danner SA, Vandenbroucke-Grauls C-MJE, Agtmael M-A (2006) Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J Clin Microbiol 44(1):119–123.  https://doi.org/10.1128/JCM.44.1.119-123.2006 Google Scholar
  51. Prakriti V, Madhu S, Uma C (2012) A comprehensive review of diagnostic techniques for detection of cryptosporidium parvum in stool samples. IOSR J Pharm 2(5):15–26Google Scholar
  52. Ranjbaran R, Okhovat MA, Abbasi M, Moezzi L, Aboualizadeh F, Amidzadeh Z, Golafshan HA, Behzad-Behbahani A, Sharifzadeh S (2016) Detection of t(9;22) b2a2 fusion transcript by flow cytometry. Int J Lab Hematol 38(4):403–411.  https://doi.org/10.1111/ijlh.12515 Google Scholar
  53. Reboursiere E, Chantepie S, Gac AC, Reman O (2015) Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther 8(1):28–33.  https://doi.org/10.1016/j.hemonc.2014.09.002 Google Scholar
  54. Rodriguez-Vicente AE, Diaz MG, Hernandez-Rivas JM (2013) Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 206(3):49–62.  https://doi.org/10.1016/j.cancergen.2013.01.003 Google Scholar
  55. Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R (2013) Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 54(11):2351–2364.  https://doi.org/10.3109/10428194.2013.783913 Google Scholar
  56. Sarkari B, Ashrafmansori A, Hatam GR, Motazedian MH, Asgari Q, Mohammadpour I (2012) Genotyping of giardia lamblia isolates from human in southern Iran. Trop Biomed 29(3):1–6Google Scholar
  57. Savic S, Bubendorf L (2012) Role of in situ hybridization in lung cancer cytology. Acta Cytol 56(6):611–621.  https://doi.org/10.1159/000339792 Google Scholar
  58. Sawyer JR (2011) The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 204(1):3–12.  https://doi.org/10.1016/j.cancergencyto.2010.11.002 Google Scholar
  59. Schmiedel D, Epple HJ, Loddenkemper C, Ignatius R, Wagner J, Hammer B, Petrich A, Stein H, Göbel UB, Schneider T, Moter A (2009) Rapid and accurate diagnosis of human intestinal spirochetosis by fluorescence in situ hybridization. J Clin Microbiol 47(5):1393–1401.  https://doi.org/10.1128/JCM.02469-08 Google Scholar
  60. Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Croppinger J, Ballif BC (2007) The identification of micro deletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 145C(4):335–345.  https://doi.org/10.1002/ajmg.c.30152 Google Scholar
  61. Sowjanya K, Carla M-R, Ronnie F (2013) Diagnostic tests for Helicobacter pylori. Gastroenterol Endosc News, pp 51–58Google Scholar
  62. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347(15):1175–1186.  https://doi.org/10.1056/NEJMra020542 Google Scholar
  63. Walker LC, McDonald M, Wells JE, Harris GC, Robinson BA, Morris CM (2013) Dual-color fluorescence in situ hybridization reveals an association of chromosome 8q22 but not 8p21 imbalance with high grade invasive breast carcinoma. PLoS One 8(7):e70790.  https://doi.org/10.1371/journal.pone.0070790 Google Scholar
  64. Wan TS (2014) Cancer cytogenetics: methodology revisited. Ann Lab Med 34(6):413–425.  https://doi.org/10.3343/alm.2014.34.6.413 Google Scholar
  65. Weickhardt AJ, Aisner DL, Franklin WA, Varella-Garcia M, Doebele RC, Camidge DR (2013) Diagnostic assays for identification of anaplastic lymphoma kinase-positive non-small cell lung cancer. Cancer 119(8):1467–1477.  https://doi.org/10.1002/cncr.27913 Google Scholar
  66. Weissenböck H, Ondrovics M, Gurtner S, Schiessl P, Mostegl MM, Richter B (2011) Development of a chromogenic in situ hybridization for giardia duodenalis and its application in canine, feline, and porcine intestinal tissues samples. J Vet Diagn Investig 23(3):486–491.  https://doi.org/10.1177/1040638711404151 Google Scholar
  67. Wippold FJ, Perry A (2007) Neuropathology for the neuroradiologist: fluorescence in situ hybridization. Am J Neuroradiol 28(3):406–410Google Scholar
  68. Ye CJ, Heng HH (2017) High resolution fiber-fluorescence in situ hybridization. Methods Mol Biol 1541:151–166.  https://doi.org/10.1007/978-1-4939-6703-2_14 Google Scholar
  69. Yoshida A, Kohno T, Tsuta K, Wakai S, Arai Y, Shimada Y, Asamura H, Furuta K, Shibata T, Tsuda H (2013) ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol 37(4):554–562.  https://doi.org/10.1097/PAS.0b013e3182758fe6 Google Scholar
  70. Zahedipour F, Ranjbaran R, Behzad-Behbahani A, Tavakol Afshari Kh, Okhovat MA, Tamadon GhH, Sharifzadeh S (2017) Development of flow cytometry-fluorescent in situ hybridization (Flow-FISH) method for detection of PML/RARa Chromosomal Translocation in acute promyelocytic leukemia cell line. Avicenna J Medical Biotech 9(2):104–108Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Molecular Pathology, Nemazee Hospital, School of MedicineShiraz University of Medical SciencesShirazIran
  2. 2.Department of Medical Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
  3. 3.Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran

Personalised recommendations