Advertisement

On the Maurey–Pisier and Dvoretzky–Rogers Theorems

  • Gustavo AraújoEmail author
  • Joedson Santos
Article
  • 24 Downloads

Abstract

A famous theorem due to Maurey and Pisier asserts that for an infinite dimensional Banach space E, the infumum of the q such that the identity map \(id_{E}\) is absolutely \(\left( q,1\right) \)-summing is precisely \(\cot E\). In the same direction, the Dvoretzky–Rogers Theorem asserts \(id_{E}\) fails to be absolutely \(\left( p,p\right) \)-summing, for all \(p\ge 1\). In this note, among other results, we unify both theorems by charactering the parameters q and p for which the identity map is absolutely \(\left( q,p\right) \)-summing. We also provide a result that we call strings of coincidences that characterize a family of coincidences between classes of summing operators. We illustrate the usefulness of this result by extending a classical result of Diestel, Jarchow and Tonge and the coincidence result of Kwapień.

Keywords

Absolutely summing operators Maurey–Pisier theorem Dvoretzky–Rogers theorem 

Mathematics Subject Classification

46A32 47H60 

Notes

References

  1. Arregui, J.L., Blasco, O.: \((p, q)\)-summing sequences. J. Math. Anal. Appl. 274, 812–827 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bayart, F., Pellegrino, D., Rueda, P.: On coincidence results for summing multilinear operators: interpolation, \(\ell _{1}\)-spaces and cotype (2018). arXiv:1805.12500v1
  3. Bernardino, A.T.: On cotype and a Grothendieck-type Theorem for absolutely summing multilinear operators. Quaestiones Math. 34, 1–7 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Botelho, G., Pellegrino, D., Rueda, P.: Cotype and absolutely summing linear operators. Math. Z. 267, 1–7 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  6. Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed spaces. Proc. Natl. Acad. Sci. USA 36, 192–197 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Kwapień, S.: Some remarks on \((p, q)\)-absolutely summing operators in \(\ell _p\)-space. Stud. Math. 29, 327–337 (1968)CrossRefzbMATHGoogle Scholar
  8. Matos, M.C.: Fully absolutely summing and Hilbert-Schmidt multilinear mapping. Collect. Math. 54, 111–136 (2003)MathSciNetzbMATHGoogle Scholar
  9. Pérez-García, D.: Operadores multilineales absolutamente sumantes, Ph.D. Thesis, Universidad Complutense de Madrid, Spain (2003)Google Scholar
  10. Popa, D.: Reverse inclusions for multiple summing operators. J. Math. Anal. Appl. 350, 360–368 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Estadual da ParaíbaCampina GrandeBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations