On the Maurey–Pisier and Dvoretzky–Rogers Theorems

  • Gustavo AraújoEmail author
  • Joedson Santos


A famous theorem due to Maurey and Pisier asserts that for an infinite dimensional Banach space E, the infumum of the q such that the identity map \(id_{E}\) is absolutely \(\left( q,1\right) \)-summing is precisely \(\cot E\). In the same direction, the Dvoretzky–Rogers Theorem asserts \(id_{E}\) fails to be absolutely \(\left( p,p\right) \)-summing, for all \(p\ge 1\). In this note, among other results, we unify both theorems by charactering the parameters q and p for which the identity map is absolutely \(\left( q,p\right) \)-summing. We also provide a result that we call strings of coincidences that characterize a family of coincidences between classes of summing operators. We illustrate the usefulness of this result by extending a classical result of Diestel, Jarchow and Tonge and the coincidence result of Kwapień.


Absolutely summing operators Maurey–Pisier theorem Dvoretzky–Rogers theorem 

Mathematics Subject Classification

46A32 47H60 



  1. Arregui, J.L., Blasco, O.: \((p, q)\)-summing sequences. J. Math. Anal. Appl. 274, 812–827 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bayart, F., Pellegrino, D., Rueda, P.: On coincidence results for summing multilinear operators: interpolation, \(\ell _{1}\)-spaces and cotype (2018). arXiv:1805.12500v1
  3. Bernardino, A.T.: On cotype and a Grothendieck-type Theorem for absolutely summing multilinear operators. Quaestiones Math. 34, 1–7 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Botelho, G., Pellegrino, D., Rueda, P.: Cotype and absolutely summing linear operators. Math. Z. 267, 1–7 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  6. Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed spaces. Proc. Natl. Acad. Sci. USA 36, 192–197 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Kwapień, S.: Some remarks on \((p, q)\)-absolutely summing operators in \(\ell _p\)-space. Stud. Math. 29, 327–337 (1968)CrossRefzbMATHGoogle Scholar
  8. Matos, M.C.: Fully absolutely summing and Hilbert-Schmidt multilinear mapping. Collect. Math. 54, 111–136 (2003)MathSciNetzbMATHGoogle Scholar
  9. Pérez-García, D.: Operadores multilineales absolutamente sumantes, Ph.D. Thesis, Universidad Complutense de Madrid, Spain (2003)Google Scholar
  10. Popa, D.: Reverse inclusions for multiple summing operators. J. Math. Anal. Appl. 350, 360–368 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Estadual da ParaíbaCampina GrandeBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations