Two-Weight Weak Type Inequality for Modified Fractional Maximal Function Defined with Respect to Non-Doubling Measure and Some Applications in Non-standard Lebesgue Spaces

  • Sambourou MassinankeEmail author


Let \( \mu \) a nonnegative Radon measure on \( {\mathbb{R}}^{d} \); \( p,q,\gamma ,k \) real numbers; \( M_{\mu ,k}^{\gamma } \) a fractional maximal operator; \( A_{p,q}^{\gamma ,k} \left( \mu \right) \) a Muckenhoupt condition associated to \( \mu \); \( L^{p( \cdot )} ({\mathbb{R}}^{d} , \mu ) \) and \( F(q, p,\alpha ,\mu )({\mathbb{R}}^{d} ) \) two generalized Lebesgue spaces. The purpose of the present work is double:
  • First, a characterization of the Muckenhoupt \( A_{p,q}^{\gamma ,k} \left( \mu \right) \) is given.

  • At the end, the fractional maximal \( M_{\mu ,k}^{\gamma } \) is applied on the two generalized Lebesgue spaces \( L^{p( \cdot )} ({\mathbb{R}}^{d} , \mu ) \) and \( F(q, p,\alpha ,\mu )({\mathbb{R}}^{d} ) \).


Fractional maximal operator \( A_{p} \)-weights theory Generalization of Lebesgue spaces Besicovitch covering lemma Radon measure 



I thank very sincerely the reviewer for his comments which helped us to improve the presentation of our results.


  1. Capogna, L., Kenig, C., Lanzani, L.: Harmonic Measure, University Lecture Series, vol. 35. Amer. Math. Soc, Providence (2005)zbMATHGoogle Scholar
  2. Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  3. Edmunds, D.E., Kokilashvili, V., Meskhi, A.: Bounded and compact integral operators. Kluwer, Dordrecht (2002). (Chapter 6 for further generalizations) CrossRefzbMATHGoogle Scholar
  4. García-Cuerva, J., Martell, J.M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50(3), 1241–1280 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Garcia-Cuerva, J., Rubio de Francia, J.: Weighted norm inequalities and related topics North-Holland Mathematical Studies, vol. 116. North-Holland, Amsterdam (1985)zbMATHGoogle Scholar
  6. Guarcia-Cuerva, J., Eduardo-Gatto, A.: Lipschitz spaces and Calderon Zygmund operators associated to non-doubling measures (2002) (preprint).
  7. Gusman, M.: Differentiation of Integrals in \( {\mathbb{R}}^{d } \). Springer, Berlin (1975).Google Scholar
  8. Hardy, G.H., Littlewood, J.E.: A maximal theorem with function-theoretic applications. Acta Math. 54, 81–116 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Harjulehto, P., Hasto, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254, 591–609 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1994)Google Scholar
  11. Kokilashvili, V.: Weighted estimates for classical integral operators. In: Kufner, A., Rakosnik, J., Krbec, M., Opic, B. (eds.) Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Roudnice nad Labem. Teubner Texte zur Mathematik, Band 119, pp. 86–103. B. G. Teubner Verlagsgesellschaft, Leipzig (1990)Google Scholar
  12. Lerner A.: On modular inequalities in variable space \( L^{p} \) spaces. Arch. Math. (Basel) 85, 538–543 (2005).Google Scholar
  13. Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for non-doubling measures. Duke Math. J. 102, 533–565 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190, 151–239 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Nazarov, F., Treil, S., Volberg, A.: Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math. J. 113, 259–312 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderon–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices 15, 703–726 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderon–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices 9, 463–487 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Orobitg, J., Perez, C.: \( A_{p } \)weights for non-doubling measure in \( {\mathbb{R}}^{d} \) and applications. Trans. Math. Soc. 354:2013–2033 (2002)Google Scholar
  20. Samko, S., Kokilashvili, V.: Maximal and fractional operators in weighted \( L^{p\left( x \right)} \) spaces. Rev. Mat. Iberoam. 20, 493–515 (2004)Google Scholar
  21. Tolsa, X.: A proof of the weak (1,1) inequality for singular integrals with non-doubling measures based on a Calderón–Zygmund decomposition, vol. 45, no. 1, pp. 163–174. Universitat Autònoma de Barcelona, Barcelona (2001)Google Scholar
  22. Tolsa, X.: \( L^{2} \)-boundedness of the Cauchy integral operator for continuous measures. Duke Math. J. 98(2), 269–304 (1999)Google Scholar
  23. Wiener, N.: The ergodic theorem. Duke Math. J. 5, 1–18 (1930)CrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  1. 1.Department of Studies and Researches of Mathematics and Computer Sciences, Faculty of Sciences and Techniques (FST) of BamakoUniversity of BamakoBamakoMali

Personalised recommendations