Pseudo-parallel surfaces of \(\mathbb {S}_c^n \times \mathbb {R}\) and \(\mathbb {H}_c^n \times \mathbb {R}\)

  • G. A. LobosEmail author
  • M. P. Tassi
  • A. J. Yucra Hancco


In this work we give a characterization of pseudo-parallel surfaces in \(\mathbb {S}_c^n \times \mathbb {R}\) and \(\mathbb {H}_c^n\times \mathbb {R}\), extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when \(n=3\), we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when \(n\ge 4\) we give examples of pseudo-parallel surfaces with non vanishing normal curvature.


Surface Parallel Semi-parallel Pseudo-parallel \(\lambda \)-Isotropic Minimal 

Mathematics Subject Classification

53B25 53C42 



The authors are thankful to the referee for their valuable comments and suggestions towards the improvement of this work.


  1. Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel immersions of a space form. Mat. Contemp. 17, 59–70 (1999)MathSciNetzbMATHGoogle Scholar
  2. Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel submanifolds of a space form. Adv. Geom. 2, 57–71 (2002)MathSciNetzbMATHGoogle Scholar
  3. Asperti, A.C., Mercuri, F.: Semi-parallel immersions into space forms. Boll. Un. Mat. Ital. 8, 883–895 (1994)MathSciNetzbMATHGoogle Scholar
  4. Bryant, R.: Conformal and minimal immersions of compact surfaces into the \(4\)-sphere. J. Diff. Geom. 17, 455–473 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Calvaruso, G., Kowalczyk, D., Van der Veken, J.: On extrinsically symmetric hypersurfaces of \(\mathbb{H}^n\times {\mathbb{R}}\). Bull. Aust. Math. Soc. 82, 390–400 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Chern, S.S.: On minimal spheres in the four-sphere. In: Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), Math. Res. Center, Nat. Taiwan Univ., Taipei, pp. 137–150 (1970)Google Scholar
  7. Chern, S.S.: do Carmo, M.P., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Browder, F.E. (ed.) Functional Analysis and Related Fields, pp. 59–75. Springer, Berlin (1970)Google Scholar
  8. Deprez, J.: Semiparallel surfaces in Euclidean space. J. Geom. 25, 192–200 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A 44, 1–34 (1992)MathSciNetzbMATHGoogle Scholar
  10. Lin, F., Yang, B.: Pseudo-parallel hypersurfaces of \({\mathbb{S}}^n \times {\mathbb{R}}\) and \({\mathbb{H}}^n \times {\mathbb{R}}\). JP J. Geom. Topol. 15(2), 99–111 (2014)MathSciNetGoogle Scholar
  11. Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81–93 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Itoh, T., Ogiue, K.: Isotropic immersion. J. Differ. Geom. 8, 305–316 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Lobos, G.A.: Pseudo-parallel surfaces in space forms. Differential Geometry, Valencia 2001. World Scientific Publications, River Edge (2002)zbMATHGoogle Scholar
  14. Lobos, G.A., Tassi, M.P.: A classification of pseudo-parallel hypersurfaces of \(\mathbb{S}^{n} \times \mathbb{R}\) and \(\mathbb{H}^{n} \times \mathbb{R}\). Differ. Geom. Appl. 62, 72–82 (2019)CrossRefzbMATHGoogle Scholar
  15. Mendonça, B., Tojeiro, R.: Submanifolds of products of space forms. Indiana Univ. Math. J. 62(4), 1283–1314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Mendonça, B., Tojeiro, R.: Umbilical submanifolds of \(\mathbb{S}^n \times {\mathbb{R}}\). Can. J. Math. 66, 400–428 (2014)CrossRefzbMATHGoogle Scholar
  17. O’Neill, B.: Isotropic and Kähler immersions. Canad. J. Math. 17, 907–915 (1965)CrossRefzbMATHGoogle Scholar
  18. Sakaki, M.: On the curvature ellipse of minimal surfaces in \(N^3(c) \times {\mathbb{R}}\). Bull. Belg. Math. Soc. Simon Stevin 22, 165–172 (2015)MathSciNetzbMATHGoogle Scholar
  19. Sakamoto, K.: Constant isotropic surfaces in \(5\)-dimensional space forms. Geometria Dedicata 29, 293–306 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Sakamoto, K.: Planar geodesic immersions. Tohoku Math. J. 29, 25–56 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Van der Veken, J., Vrancken, L.: Parallel and semi-parallel hypersurfaces of \(\mathbb{S}^n\times {\mathbb{R}}\). Bull. Braz. Math. Soc. 39, 355370 (2008)Google Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  1. 1.Departament of MathematicsFederal University of São CarlosSão CarlosBrazil
  2. 2.Federal University of TocantinsCampus AraguaínaAraguaínaBrazil

Personalised recommendations