, Volume 29, Issue 6, pp 591–598 | Cite as

Axenic growth of the arbuscular mycorrhizal fungus Rhizophagus irregularis and growth stimulation by coculture with plant growth-promoting rhizobacteria

  • Lobna AbdellatifEmail author
  • Prabhath Lokuruge
  • Chantal Hamel
Original Article


Arbuscular mycorrhizal (AM) fungi are ecologically important for the growth and survival of most vascular plants. These fungi are known as obligate biotrophs that acquire carbon solely from host plants. A 13C-labeling experiment revealed the ability of axenically grown Rhizophagus irregularis DAOM 197198 to derive carbon from axenic culture on a relatively novel medium containing two sources of palmitic acid developed by Ishii (designated IH medium). In a separate experiment, this model fungus grew larger mycelia and produced more daughter spores on the IH medium in the presence of two Variovorax paradoxus strains than in axenic culture. In contrast, a strain of Mycobacterium sp. did not influence the growth of the AM fungus. Rhizophagus irregularis produced branched absorbing structures on the IH medium and, in monoxenic culture with V. paradoxus, sometimes formed densely packed hyphal coils. In this study, we report for the first time the formation of coarse terminal pelotons and of terminal and intercalary very fine (≈ 1 μm diameter) hyphal elongations, which could form daughter spores in the presence of V. paradoxus. This study shows the value of IH medium and certain rhizobacteria in the culture of R. irregularis DAOM 197198 in vitro.


Arbuscular mycorrhizal fungi Axenic culture Mycorrhiza helper bacteria Plant growth-promoting rhizobacteria Rhizophagus irregularis 



Deepest thanks to Dhia Khadri for helping with isotopic calculations, Takaaki Ishii for providing DMPC and DMPE, Michelle Hubbard for reviewing the manuscript, and Keith Hanson for providing technical assistance.

Funding information

This research was supported by grant 20120091 from the Agriculture Development Fund of the Province of Saskatchewan and grant 20120091 from Saskatchewan Pulse Growers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abdellatif L, Ben-Mahmoud OM, Yang C, Hanson KG, Gan Y, Hamel C (2017) The H2-oxidizing rhizobacteria associated with field-grown lentil promote the growth of lentil inoculated with Hup + Rhizobium through multiple modes of action. J Plant Growth Regul 36:348–361. CrossRefGoogle Scholar
  2. Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14:221–228. CrossRefPubMedGoogle Scholar
  3. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10. CrossRefPubMedGoogle Scholar
  4. Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388. CrossRefGoogle Scholar
  5. Bago B, Pfeffer PE, Douds DD Jr, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–272. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bécard G, Fortin J (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218. CrossRefGoogle Scholar
  7. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bidondo LF, Pergola M, Silvani V, Colombo R, Bompadre J, Godeas A (2012) Continuous and long-term monoxenic culture of the arbuscular mycorrhizal fungus Gigaspora decipiens in root organ culture. Fungal Biol 116:729–735. CrossRefPubMedGoogle Scholar
  9. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48CrossRefGoogle Scholar
  10. Brands M, Wewer V, Keymer A, Gutjahr C, Dörmann P (2018) The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Plant J 95:219–232CrossRefGoogle Scholar
  11. Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321CrossRefGoogle Scholar
  12. Christie WW (2014) Phosphatidylcholine and related lipids: structure, occurrence, biochemistry and analysis. AOCS Lipid Library. Available online at Accessed Jan 2019
  13. Coplen T, Bohlke J, De Bièvre P, Ding T, Holden N, Hopple JA, Krouse H, Lamberty A, Peiser H, Révész K, Rieder S, Rosman K (2002) Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure Appl Chem 74:1987–2017. CrossRefGoogle Scholar
  14. Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242. CrossRefGoogle Scholar
  15. Declerck S, Strullu D-G, Fortin JA (eds) (2005) In vitro culture of mycorrhizas. Springer, Berlin 400 pGoogle Scholar
  16. Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22CrossRefGoogle Scholar
  17. Douds DD Jr (1994) Relationship between hyphal and arbuscular colonization and sporulation in a mycorrhiza of Paspalum notatum Flugge. New Phytol 126:233–237. CrossRefGoogle Scholar
  18. Fagone P, Jackowski S (2013) Phosphatidylcholine and the CDP–choline cycle. Biochimt Biophys Acta Mol Cell Biol Lipids 1831:523–532. CrossRefGoogle Scholar
  19. Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6565CrossRefGoogle Scholar
  20. Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20. CrossRefGoogle Scholar
  21. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. CrossRefPubMedGoogle Scholar
  22. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823CrossRefGoogle Scholar
  23. Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823. CrossRefPubMedCentralGoogle Scholar
  24. Hepper CM (1979) Germination and growth of Glomus caledonius spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277. CrossRefGoogle Scholar
  25. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924CrossRefGoogle Scholar
  26. Hildebrandt U, Ouziad F, Marner F-J, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267. CrossRefPubMedGoogle Scholar
  27. Horii S, Ishii T (2006) Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis (Rehovot) 41:135–141Google Scholar
  28. Ishii T (2012) Soil management with partner plants which propagate arbuscular mycorrhizal fungi and their endobacteria. IFO Res Commun 26:87–100Google Scholar
  29. Ishii T (2014) The role and use of mycorrhizal fungi. Noyama Fishing Village Cultural Association. Japan. p 107Google Scholar
  30. Ivanov S, Austin J II, Berg RH, Harrison MJ (2019) Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nat Plants 5:194–203CrossRefGoogle Scholar
  31. Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, Zhou Y, Wang E (2018) Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Mol Plant 11:1344–1359. CrossRefPubMedGoogle Scholar
  32. Keymer A, Gutjahr C (2018) Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Curr Opin Plant Biol 44:137–144CrossRefGoogle Scholar
  33. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL et al (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6:e29107CrossRefGoogle Scholar
  34. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163CrossRefGoogle Scholar
  35. Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Krištůfek V, Wubet T, Herrmann S, Buscot F, Tarkka MT (2013) Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol 13:205CrossRefGoogle Scholar
  36. Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–1046. CrossRefPubMedGoogle Scholar
  37. Liu X, Feng Z, Zhu H, Yao QJM (2019) Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status. Mycorrhiza:1–9.
  38. Long L, Lin Q, Yao Q, Zhu H (2017) Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita. 3 Biotech 7:8. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178CrossRefGoogle Scholar
  40. Marsh BB (1971) Methods of lab: Measurement of length in random arrangements of lines. J Appl Ecol 8:265–267CrossRefGoogle Scholar
  41. Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223, IN9–IN12, 219–223. CrossRefGoogle Scholar
  42. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050CrossRefGoogle Scholar
  43. Nakano-Hylander A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47CrossRefGoogle Scholar
  44. Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145CrossRefGoogle Scholar
  45. O’Leary MH (1988) Carbon isotopes in photosynthesis: fractionation techniques may reveal new aspects of carbon dynamics in plants. BioScience 38:328–336. CrossRefGoogle Scholar
  46. Pawlowska TE, Douds DD Jr, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556. CrossRefGoogle Scholar
  47. Rich MK, Nouri E, Courty P-E, Reinhardt D (2017) Diet of arbuscular mycorrhizal fungi: bread and butter? Trends Plant Sci 22:652–660. CrossRefPubMedGoogle Scholar
  48. Roth R, Paszkowski U (2017) Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr Opin Plant Biol 39:50–56. CrossRefPubMedGoogle Scholar
  49. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384CrossRefGoogle Scholar
  50. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332. CrossRefGoogle Scholar
  51. Tedersoo L, Naadel T, Bahram M, Pritsch K, Buegger F, Leal M, Kõljalg U, Põldmaa K (2012) Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytol 195:832–843. CrossRefPubMedGoogle Scholar
  52. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. CrossRefGoogle Scholar
  53. Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux J-A (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347CrossRefGoogle Scholar
  54. Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA, Ihsan M, Laiq M, Ullah S, Fahad S, Khan A, Khan AH, Akbar A, Yang X (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Swift Current Research and Development CentreAgriculture and Agri-Food CanadaSwift CurrentCanada
  2. 2.Quebec Research and Development CentreAgriculture and Agri-Food CanadaQuebec CityCanada

Personalised recommendations