pp 1–6 | Cite as

Soil spore bank in Tuber melanosporum: up to 42% of fruitbodies remain unremoved in managed truffle grounds

  • Laure Schneider-Maunoury
  • Elisa Taschen
  • Franck Richard
  • Marc-André SelosseEmail author
Short Note


Fungi fruiting hypogeously are believed to form spore banks in soil especially because some fruitbodies are not removed by animals. However, little is known on the proportion of fruitbodies that are not removed by animals. We took advantage of the brûlé phenomenon, which allows delineation of the mycelium distribution, to assess the proportion of unremoved black truffle (Tuber melanosporum) fruitbodies in the context of plantations where fruitbodies are actively sought and harvested by truffle growers. We inspected portions of the brûlés after the harvest season to find unremoved fruitbodies. On average, from six truffle grounds in which a total of 38 brûlés were investigated, unremoved fruitbodies represented 33% of the whole fruitbody production (42% when averaging all the brûlés). We discuss this value and its high variability among truffle grounds. Beyond the local and variable accidental reasons that may lead to this high proportion, we speculate that the formation of some undetectable fruitbodies may be under selection pressure, given the reproductive biology of T. melanosporum.


Ascomycetes life cycle Brûlé Mycorrhizae Spore dispersal 



We are very grateful to Lucien Bonneau, Francis Caulet, Jean-Paul Laurents, Lucien Romieu, Patrick Savary, and Jean-François Tourette for having carried out the protocol on, or given access to, their truffle ground. We thank Dominique Barry-Etienne and Claude Murat for information on truffle fruitbody decomposition in soil, David Marsh for English corrections, two anonymous referees and Jan Colpaert for insightful comments on earlier versions of this paper, and Lucien Bonneau for providing pictures of the experiment (supplementary figure S1).

Authors’ contributions

LSM and MAS designed the study, contributed a new spore bank evaluation method, analyzed the data, and wrote the paper. All authors performed the research and improved the manuscript.

Supplementary material

572_2019_912_MOESM1_ESM.pdf (236 kb)
Figure S1. Search for unremoved T. melanosporum fruitbodies at the end of the harvest season. (a) Delineation of a 30 × 30 cm surface, arbitrarily located. (b) Digging of a well to harvest the unremoved fruitbodies. (c) Five unremoved fruitbodies. Courtesy Lucien Bonneau. Figure S2. Number of unremoved fruitbodies per square meter is not correlated with the number of harvested truffles per square meter. (A) all brûlés (linear regression model, P = 0.17); (B) all truffle grounds (linear regression model, P = 0.46). (PDF 235 kb)


  1. Bertault G, Rousset F, Fernandez D, Berthomieu A, Hochberg ME, Callot G, Raymond M (2001) Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity 86:451–458CrossRefGoogle Scholar
  2. Bonito G, Smith ME, Brenneman T, Vilgalys R (2012) Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap-plants. Plant Soil 356:357–366CrossRefGoogle Scholar
  3. Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470CrossRefGoogle Scholar
  4. Callot G (1999) La Truffe, la Terre, la Vie. Editions Quae, ParisGoogle Scholar
  5. Colgan W, Claridge AW (2002) Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Myc Res 106:314–320CrossRefGoogle Scholar
  6. De la Varga H, Le Tacon F, Lagoguet M, Todesco F, Varga T, Miquel I, Barry-Etienne D, Robin C, Halkett F, Martin F, Murat C (2017) Five years investigation of female and male genotypes in périgord black truffle (Tuber melanosporum Vittad.) revealed contrasted reproduction strategies. Environ Microbiol 19:2604–2615CrossRefGoogle Scholar
  7. Douhan G, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597CrossRefGoogle Scholar
  8. Dunham SM, Mujic AB, Spatafora JW, Kretzer AM (2013) Within-population genetic structure differs between two sympatric sister-species of ectomycorrhizal fungi, Rhizopogon vinicolor and R vesiculosus. Mycologia 105:814–826CrossRefGoogle Scholar
  9. Glassman SI, Peay KG, Talbot JM, Smith DP, Chung JA, Taylor JW, Vilgalys R, Bruns TD (2015) A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytol 205:1619–1631CrossRefGoogle Scholar
  10. Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst 5:13–36CrossRefGoogle Scholar
  11. Kjøller R, Bruns TD (2003) Rhizopogon spore bank communities within and among California pine forests. Mycologia 95:603–613CrossRefGoogle Scholar
  12. Kretzer AM, Dunham S, Molina R, Spatafora JW (2005) Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota). Mol Ecol 14:2259–2268CrossRefGoogle Scholar
  13. Le Tacon F (2017) Les truffes. Biologie, écologie et domestication. AgroParisTech, NancyGoogle Scholar
  14. Murat C (2015) Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81CrossRefGoogle Scholar
  15. Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187CrossRefGoogle Scholar
  16. Murat C, Bonneau L, De La Varga H, Olivier JM, Sandrine F, Le Tacon F (2016) Trapping truffle production in holes: a promising technique for improving production and unravelling truffle life cycle. Italian J Mycol 45:47–53Google Scholar
  17. Murata M, Nagata Y, Nara K (2017) Soil spore banks of ectomycorrhizal fungi in endangered Japanese Douglas-fir forests. Ecol Res 32:469–479CrossRefGoogle Scholar
  18. Riccioni C, Belfiori B, Rubini A, Passeri V, Arcion S, Paolocci F (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478CrossRefGoogle Scholar
  19. Schneider-Maunoury L, Clément C, Coves H, Lambourdière J, Leclercq S, Richard F, Selosse M-A, Taschen E (2018) Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol 31:59–68CrossRefGoogle Scholar
  20. Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Murat C, Courty P-E, Jakalski M, Selosse M-A (2019). Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, colonize endophytically roots of non-ectomycorrhizal plant in natural environments. New Phytol, in pressGoogle Scholar
  21. Selosse M-A, Taschen E, Giraud T (2013) Do black truffles avoid sexual harassment by linking mating type and vegetative incompatibility? New Phytol 199:10–13CrossRefGoogle Scholar
  22. Selosse M-A, Schneider-Maunoury L, Taschen E, Rousset F, Richard F (2017) Black truffle, a hermaphrodite with forced unisexual behaviour. Trends Microbiol 25:784–787CrossRefGoogle Scholar
  23. Séne S, Selosse M-A, Forget M, Lambourdière J, Cissé K, Diédhiou AG, Rivera-Ocasio E, Kodja H, Kameyama N, Nara K, Vincenot L, Mansot J-L, Weber J, Roy M, Sylla SN, Bâ A (2018) A pantropically introduced tree is followed by specific ectomycorrhizal symbionts due to pseudo-vertical transmission. ISME J 12:1806–1816CrossRefGoogle Scholar
  24. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699CrossRefGoogle Scholar
  25. Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194:823–835CrossRefGoogle Scholar
  26. Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8CrossRefGoogle Scholar
  27. Taschen E, Rousset F, Sauve M, Benoit L, Dubois M-P, Richard F, Selosse M-A (2016) How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations of Tuber melanosporum. Mol Ecol 25:5611–5627CrossRefGoogle Scholar
  28. Urban A (2017) Truffles and small mammals. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world. Springer, Berlin, pp 353–373Google Scholar
  29. Vašutová M, Mleczko P, López-García A, Maček I, Boros G, Ševčík J, Fujii S, Hackenberger D, Tuf IH, Hornung E, Páll-Gergely, Kjøller R (2019) Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza in pressCrossRefGoogle Scholar
  30. Vincenot L, Selosse M-A (2017). Population biology and ecology of ectomycorrhizal fungi. Ecol Studies 230:39–59Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Systématique, Évolution, Biodiversité (ISYEB – UMR 7205 – CNRS, MNHN, SU, EPHE)Muséum national d’Histoire naturelleParisFrance
  2. 2.INRA, UMR Eco&SolsMontpellierFrance
  3. 3.CEFE UMR 5175, CNRSUniversité de Montpellier - Université Paul-Valéry Montpellier – EPHEMontpellierFrance
  4. 4.Faculty of BiologyUniversity of GdańskGdańskPoland

Personalised recommendations