, Volume 29, Issue 2, pp 113–125 | Cite as

Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France)

  • Meili Baragatti
  • Paul-Marie Grollemund
  • Pierre Montpied
  • Jean-Luc Dupouey
  • Joël Gravier
  • Claude Murat
  • François Le TaconEmail author
Original Article


From 1903–1904 to 1988–1989, the two World Wars and sociological factors as rural desertification and changes in land uses mainly explained the decline of black truffle production in the Vaucluse department, which well reflects that of the whole of France. These can be correlated with the annual climatic variations as well as, from 1924–1925 to 1948–1949, the raw production rates of the managed truffle orchard of Pernes-les-Fontaines located in Vaucluse. The two methods used (correlation coefficients and Bayesian functional linear regression with Sparse Step functions) gave consistent results: the main factor explaining the annual variations of truffle production was the summer climatic water deficit of the year n. A general model including the rural exodus and the cumulated climatic water deficit of summer months both allowed to well explain the evolution of truffle production from 1903–1904 to 1988–1989 in the Vaucluse and its huge decrease. During that period, global warming had little effect. However, in the twenty-first century, all the scenarios predict increased summer water stress for the Mediterranean region, which could greatly affect black truffle production.


Périgord black truffle Vaucluse Annual climatic variations Global changes 



We are very indebted to Jean-Baptiste Gravier who planted the Pernes-les-Fontaines truffle orchard in 1913 and to his son Albert Gravier, who harvested the truffles and kept records up to date. We thank Météo-France for providing meteorological data, the French Ministry of Agriculture for providing truffle sales data, the French National Institute for Geographic and Forestry News (IGN) for providing forestry data and the Vaucluse for providing sociological information. We are thankful to Elaine Bonnier for having corrected the English of this article. We thank the editor and two reviewers for their constructive comments, which helped us to improve the manuscript.

Author contributions

Conception of the study: FLT, JLD, and MB. Performing the research: MB, CM, JG, PM, PMG, and FLT. Contribution of new methods: MB and PMG. Analysis of data: MB, PM, PMG, and JLD. Drafting the paper: FLT.

Funding information

We are grateful to the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE), which financed this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

572_2018_877_MOESM1_ESM.pdf (32 kb)
Figure S1 Diagnosis plots allowing to check the assumptions of variance homogeneity of variance and to check the absence of remaining trend in the residuals. (PDF 31 kb)
572_2018_877_MOESM2_ESM.pdf (11 kb)
Figure S2 Diagnosis plots allowing to check the assumptions of normality of the error terms and to check that the temporal auto-correlation was well been taken into account by the auto-regressive model. (PDF 10 kb)


  1. Baragatti M, Bertin K, Lebarbier E, Meza C (2018) A Bayesian approach for the segmentation of series with a functional effect. Stat Model.
  2. Barry-Etienne D, Diette S Moundy P-J (2007) L’histoire de la truffe noire sur le mont Ventoux et son intérêt économique. L’exemple de la commune de Bédoin. Forêt Méditerranéenne, XXVIII, vol 4, 381–388Google Scholar
  3. Bédel L (1866) Sur la production des truffes dans le département de Vaucluse et de ses rapports avec la culture forestière. Revue agricole et forestière de Provence, 169–180Google Scholar
  4. Büntgen U, Tregel W, Egli S, Stobbe U, Sproll L, Stenseth NC (2011) Truffles and climate change. Front Ecol Environ 9:150–151CrossRefGoogle Scholar
  5. Büntgen U, Egli S, Camarero JJ, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012a) Drought induced decline in Mediterranean truffle harvest. Nat Clim Chang 2:827–829CrossRefGoogle Scholar
  6. Büntgen U, Kauserud H, Egli S (2012b) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ 10:14–19CrossRefGoogle Scholar
  7. Callot G (1999) La truffe, la terre, la vie Quae. INRAGoogle Scholar
  8. Chevalier G et Wehrlen L (2008) Quelques principes de lutte intégrée contre le réchauffement climatique en trufficulture in L’avenir de la truffe face au réchauffement climatique. La truffe européenne est-elle en danger ? Rousset-Rouard Y, publishing director, Olivier J-M, scientific coordinator, Albin Michel, 48 to 62Google Scholar
  9. Genola L (2008) Peut-on envisager une trufficulture performante face aux nouvelles contraintes climatiques in L’avenir de la truffe face au réchauffement climatique. La truffe européenne est-elle en danger ? Rousset-Rouard Y, publishing director, Olivier J-M, scientific coordinator, Albin Michel, 86 to 97Google Scholar
  10. George-Grimblot CA (1878) Études sur la truffe. Exposition Universelle Paris, 1878. Paris, Imprimerie nationale.Google Scholar
  11. George-Grimblot CA (1887) La Truffe française. Rev Eaux Forêts 26:345–358Google Scholar
  12. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104CrossRefGoogle Scholar
  13. Granier A, Loustau D, Bréda N (2000) A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57(8):755–765CrossRefGoogle Scholar
  14. Grollemund P-M (2017) Régression linéaire bayésienne sur données fonctionnelles. Thèse de doctorat en biostatistique. Université de MontpellierGoogle Scholar
  15. Grollemund P-M, Abraham C, Baragatti M, Pudlo P (2018) Bayesian functional linear regression with Sparse Step functions. Bayesian Anal. Advance publication.
  16. Kauserud H, Heegaard E, Büntgen U, Halvorsen R, Egli S, Senn-Irlet B, Krisai-Greilhuber I, Dämon W, Sparks T, Nordén J, Høilanda K, Kirk P, Semenov M, Boddy L, Stenseth NC (2012) Warming-induced shift in European mushroom fruiting phenology. PNAS 109(36):14488–14493CrossRefGoogle Scholar
  17. Le Tacon F (2016) Influence of climate on natural distribution of Tuber species and truffle production in True truffle (Tuber spp.) in the world. A, Iotti M, Murat C (eds) Soil biology, vol 47, 153–167Google Scholar
  18. Le Tacon F, Delmas J, Gleyze R, Bouchard D (1982) Influence du régime hydrique du sol et la fertilisation sur la fructification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le Sud-Est de la France. Acta Oecol Oecol appl 3:291–306Google Scholar
  19. Le Tacon F (2017) Les truffes. Ecologie, biologie et domestication. Editions.Google Scholar
  20. Le Tacon F, Marçais B, Courvoisier M, Murat C, Montpied P, Becker M (2014) Climatic variations explain annual fluctuations in French ‘Périgord black truffle’ wholesale markets but do not explain the decrease in ‘black truffle’ production over the last 48 years. Mycorrhiza 24(Suppl 1):115–125. CrossRefGoogle Scholar
  21. Olivier JM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. Fanlac, Périgueux, p 398Google Scholar
  22. Olivier JM, Courvoisier M, Doublet JM, Sourzat P, Tabouret P, Tourrette JF (2013) Analyse pratique des relations entre le climat et les récoltes de truffes noires : conséquences pour une gestion raisonnée de l’eau. Le Trufficulteur 84:6–10Google Scholar
  23. Rousset-Rouard Y (ed) (2008) L’avenir de la truffe face au réchauffement climatique. Actes des IIes rencontres internationales de la truffe, Ménerbes, Carpentras, Avignon, Richerenches, Olivier J.-M., scientific coordinator, Albin MichelGoogle Scholar
  24. Sirami C, Nespoulous A, Cheylan P, Marty P, Hvenegaard G-T, Geniez P, Schatz B, Martin J-L (2010) Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: impacts on multiple taxa. Landsc Urban Plan 96(4):214–223Google Scholar
  25. Splivallo R, Rengenier R, Valdez N, Chevalier G, Molinier V, Wipf D, Karlovsky P (2012) Is climate change altering the geographic distribution of truffles? Front Ecol Environ 10:461–462CrossRefGoogle Scholar
  26. Therville C, Mangenet T, Hinnewinkel C, Sylvie Guillerme S, de Foresta H (2013) Is truffle growing a response to sustainable development and heritage issues in Mediterranean territories? The case of Uzès, southern France. For Trees Livelihoods 22(4):257–274. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR 729, MISTEA, INRA, Montpellier SupAgroMontpellierFrance
  2. 2.UMR 5149, IMAG, Université de Montpellier, CNRSMontpellierFrance
  3. 3.Université de Lorraine, AgroParisTech, Inra SILVANancyFrance
  4. 4.Pernes-les-FontainesFrance
  5. 5.Université de Lorraine, Inra, IAMNancyFrance

Personalised recommendations