Advertisement

Mycorrhiza

, Volume 29, Issue 1, pp 77–83 | Cite as

Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions

  • Babacar ThioyeEmail author
  • Diederik van Tuinen
  • Aboubacry Kane
  • Sergio Mania de Faria
  • Cheikh Ndiaye
  • Robin Duponnois
  • Samba Ndao Sylla
  • Amadou Mustapha Bâ
Short Note

Abstract

Arbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood. Here, we pre-inoculated two cultivars (Tasset and Gola) of the fruit tree Ziziphus mauritiana (jujube) with the exotic AM fungus Rhizophagus irregularis isolate IR27 before transplantation in the field. In two experiments, tracking and quantification of R. irregularis IR27 were assessed in a 13-month-old jujube and an 18-month-old jujube in two fields located in Senegal. Our results showed that the inoculant R. irregularis IR27 was quantitatively traced and discriminated from native R. irregularis isolates in roots by using a qPCR assay targeting a fragment of the RNA polymerase II gene (RPB1), and that the inoculum represented only fractions ranging from 11 to 15% of the Rhizophagus genus in the two plantations 13 and 18 months after transplantation, respectively. This study validates the use of the RPB1 gene as marker for a relative quantification of a mycorrhizal inoculant fungus isolate in the field.

Keywords

Ziziphus mauritiana Arbuscular mycorrhizal fungi Plantation RPB1 gene qPCR Field 

Notes

Funding

This work was funded by the Africa-Brazil-France tripartite research program entitled “Fight against desertification in Africa” (2014–2016). Babacar Thioye received grants from the Institut de Recherche pour le Développement (IRD), the Institut Sénégalais de Recherches Agricoles (ISRA), and from the French Embassy in Senegal (SCAC).

Supplementary material

572_2018_875_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 73 kb)

References

  1. Adelman MJ, Morton JB (1986) Infectivity of vesicular-arbuscular mycorrhizal fungi: influence of host-soil diluent combinations on MPN estimates and percentage colonization. Soil Biol Biochem 18:7–13.  https://doi.org/10.1016/0038-0717(86)901069 CrossRefGoogle Scholar
  2. Alguacil MM, Torrecillas E, Kohler J et al (2011) A molecular approach to ascertain the success of “in situ” AM fungi inoculation in the revegetation of a semiarid, degraded land. Sci Total Environ 409:2874–2880CrossRefGoogle Scholar
  3. Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y (2004) Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real-time polymerase chain reaction. New Phytol 161:877–885.  https://doi.org/10.1111/j.1469-8137.2003.00975.x CrossRefGoogle Scholar
  4. Antunes PM, Koch AM, Dunfield KE, Hart MM, Downing A, Rillig MC, Klironomos JN (2009) Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317:257–266CrossRefGoogle Scholar
  5. Bâ AM, Dalpé Y, Guissou T (1996) Les Glomales d’Acacia holosericea et d’Acaciamangium. Bois Forêt Tropiq 250:5–18Google Scholar
  6. Bâ AM, Plenchette C, Danthu P et al (2000) Functional compatibility of arbuscular mycorrhizae with thirteen tropical fruit trees in Senegal. Agrofor Syst 95:95–105CrossRefGoogle Scholar
  7. Bâ AM, Guissou T, Duponnois R, Plenchette C, Sacko O, Sidibé D, Sylla K, Windou B (2001) Mycorhization contrôlée et fertilisation phosphatée: Application à la domestication du jujubier. Fruits 56:261–269CrossRefGoogle Scholar
  8. Bâ AM, Danthu P, Duponnois R, et al (2003) Domestication of jujube fruit trees (Zizyphus mauritiana Lam.). In: Dris R, Niskanen R, Jain SM (eds) Crop Management and Postharvest Handling of Horticultural Crops, vol. 3, chap. 9, Crop fertilization, nutrition and growth, Science Publishers, Inc., p 255–279Google Scholar
  9. Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M (2016) Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza 26:721–733.  https://doi.org/10.1007/s00572-016-0708-1 CrossRefPubMedGoogle Scholar
  10. Borriello R, Bianciotto V, Orgiazzi A, Lumini E, Bergero R (2014) Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol Phyl Evol 75:1–10.  https://doi.org/10.1016/j.ympev.2014.02.012 CrossRefGoogle Scholar
  11. Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465CrossRefGoogle Scholar
  12. Börstler B, Thiéry O, Sýkorová Z et al (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511CrossRefGoogle Scholar
  13. Buysens C, Alaux P-L, Cesar V et al (2017) Tracing native and inoculated Rhizophagus irregularis in three potato cultivars (Charlotte, Nicola and Bintje) grown under field conditions. Appl Soil Ecol 115:1–9.  https://doi.org/10.1016/j.apsoil.2017.03.007 CrossRefGoogle Scholar
  14. Douds DD, Nagahashi G, Wilson DO, Moyer J (2011) Monitoring the decline in AM fungus populations and efficacy during a long term bare fallow. Plant Soil 342:319–326CrossRefGoogle Scholar
  15. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609.  https://doi.org/10.1016/j.apsoil.2006.09.012 CrossRefGoogle Scholar
  16. Friesen DK, Rao IM, Thomas RJ, Oberson A, Sanz JI (1997) Phosphorus acquisition and cycling in crop and pasture systems in low fertility tropical soils. Plant Soil 196:289–294CrossRefGoogle Scholar
  17. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  18. Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117CrossRefGoogle Scholar
  19. Guissou T, Bâ AM, Ouadba JM, Guinko S, Duponnois R (1998) Responses of Parkia biglobosa (Jacq.) Benth., Tamarindus indica L. and Zizyphus mauritiana Lam. to arbuscular mycorrhizal fungi in a phosphorus deficient soil. Biol Fertil Soils 26:194–198CrossRefGoogle Scholar
  20. Guissou T, Sanon KB, Babana A et al (2016) Effect of arbuscular mycorrhizae on growth and mineral nutrition of greenhouse propagated fruit trees from diverse geographic provenances. Biotechnol Agron Soc Environ 20:417–426Google Scholar
  21. Hart MM, Antunes PM, Abbott LK (2017) Unknown risks to soil biodiversity from commercial fungal inoculants. Nat Ecol Evol 1:0115.  https://doi.org/10.1038/s41559-017-0115 CrossRefGoogle Scholar
  22. Koch AM, Antunes PM, Barto EK et al (2011) The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions 13:1627–1639CrossRefGoogle Scholar
  23. Köhl L, Lukasiewicz CE, van der Heijden MGA (2016) Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ 39:136–146CrossRefGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  25. Ouédraogo SJ, Bayala J, Dembélé C, Kaboré A, Kaya B, Niang A, Somé AN (2006) Establishing jujube trees in sub-Saharan Africa: response of introduced and local cultivars to rock phosphate and water supply in Burkina Faso, West Africa. Agrofor Syst 68:69–80CrossRefGoogle Scholar
  26. Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376CrossRefGoogle Scholar
  27. Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822CrossRefGoogle Scholar
  28. Peyret-Guzzon M, Farcy P, Wipf D et al (2016) Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. Mycorrhiza 26:33–46CrossRefGoogle Scholar
  29. Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210CrossRefGoogle Scholar
  30. Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 70:199–209CrossRefGoogle Scholar
  31. Redecker D, Thierfelder H, Walker C, Werner D (1997) Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Appl Environ Microbiol 63:1756–1761PubMedPubMedCentralGoogle Scholar
  32. Séry DJ-M, van Tuinen D, Drain A, Mounier A, Zézé A (2018) The genus Rhizophagus dominates arbuscular mycorrhizal fungi communities in contrasted cassava field soils in Côte d’Ivoire. Rhizosphere 7:8–17.  https://doi.org/10.1016/j.rhisph.2018.06.007 CrossRefGoogle Scholar
  33. Sorensen JN, Larsen J, Jakobsen I (2008) Preinoculation with arbuscular mycorrhizal fungi increases early nutrient concentration and growth of field-grown leeks under high productivity conditions. Plant Soil 307:135–147CrossRefGoogle Scholar
  34. Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS One 9:e107783CrossRefGoogle Scholar
  35. Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80CrossRefGoogle Scholar
  36. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JPW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:0117–20122.  https://doi.org/10.1073/pnas.1313452110 CrossRefGoogle Scholar
  37. van Tuinen D, Jacquot E, Zhao B et al (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887.  https://doi.org/10.1046/j.1365-294x.1998.00410.x CrossRefPubMedGoogle Scholar
  38. Vincke C, Diedhiou I, Michel G (2010) Long term dynamics and structure of woody vegetation in the Ferlo (Senegal). J Arid Environ 74:268–276.  https://doi.org/10.1016/j.jaridenv.2009.08.006 CrossRefGoogle Scholar
  39. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191.  https://doi.org/10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Babacar Thioye
    • 1
    • 2
    Email author
  • Diederik van Tuinen
    • 3
  • Aboubacry Kane
    • 1
  • Sergio Mania de Faria
    • 4
  • Cheikh Ndiaye
    • 1
  • Robin Duponnois
    • 2
  • Samba Ndao Sylla
    • 1
  • Amadou Mustapha Bâ
    • 2
    • 5
  1. 1.Laboratoire Commun de Microbiologie IRD/ISRA/UCADDakarSenegal
  2. 2.Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113 INRA/AGRO-M/CIRAD/IRD/UM2-TA10/JCampus International de BaillarguetMontpellierFrance
  3. 3.Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche-ComtéDijonFrance
  4. 4.Embrapa AgrobiologiaSeropedicaBrazil
  5. 5.Laboratoire de Biologie et Physiologie Végétales, Faculté des Sciences Exactes et NaturellesUniversité des AntillesPointe-à-PitreFrance

Personalised recommendations