, Volume 29, Issue 1, pp 1–11 | Cite as

Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment

  • C. Guillermo BuenoEmail author
  • Maret Gerz
  • Martin Zobel
  • Mari Moora
Original Article


Empirical and taxonomic approaches are the two main methods used to assign plant mycorrhizal traits to species lists. While the empirical approach uses only available empirical information, the taxonomic approach extrapolates certain core information about plant mycorrhizal types and statuses to related species. Despite recent claims that the taxonomic approach is now almost definitive, with little benefit to be gained from further empirical data collection, it has not been thoroughly compared with the empirical approach. Using the most complete available plant mycorrhizal trait information for Europe and both assignment approaches, we calculate the proportion of species for each trait, and model environmental drivers of trait distribution across the continent. We found large degrees of mismatch between approaches, with consequences for biogeographical interpretation, among facultatively mycorrhizal (FM; 91% of species mismatched), non-mycorrhizal (NM; 45%), and to a lesser extent arbuscular mycorrhizal (AM; 16%) plant species. This can partly be attributed to the taxonomic precision of the taxonomic approach and the use of different AM, NM, and FM concepts. Our results showed that the extrapolations of the taxonomic approach do not consistently match with empirical information and indicate that more empirical data are needed, in particular for FM, NM, and AM plant species. Clarifying certain concepts underlying mycorrhizal traits and empirically describing NM, AM, and FM species within plant families can greatly improve our understanding of the biogeography of mycorrhizal symbiosis.


Arbuscular mycorrhiza (AM) Ectomycorrhiza (ECM) Ericoid mycorrhiza (ERM) Non-mycorrhizal plant species (NM) Obligately mycorrhizal (OM) Facultatively mycorrhizal (FM) 



This research was funded by grants from the Estonian Research Council (IUT 20-28) and the European Regional Development Fund (Centre of Excellence EcolChange). We thank Prof. Mark Brundrett and the editor (Prof. David Janos) for valuable suggestions. We are grateful to John Davison for valuable comments on the manuscript. C.G.B., M.G., M.Z., and M.M. planned and designed the research. C.G.B. and M.G. analyzed data and wrote the first draft; all authors contributed to the final version.

Supplementary material

572_2018_869_MOESM1_ESM.xlsx (149 kb)
ESM 1 (XLSX 149 kb)
572_2018_869_MOESM2_ESM.docx (2.8 mb)
ESM 2 (DOCX 2873 kb)
572_2018_869_MOESM3_ESM.docx (571 kb)
ESM 3 (DOCX 570 kb)


  1. Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, Cornwell WK, Agafonov VA, Selivanov IA, Cornelissen JHC (2012) A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology 93:689–690Google Scholar
  2. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495. CrossRefPubMedGoogle Scholar
  3. Brundrett M, Tedersoo L (in press) Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol.
  4. Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21171–313(21):171–313. CrossRefGoogle Scholar
  5. Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Tedersoo L (ed) Biogeography of mycorrhizal Symbiosis. Springer International Publishing, Cham, pp 533–556CrossRefGoogle Scholar
  6. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. CrossRefGoogle Scholar
  7. Brundrett MC, Kendrick B (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173CrossRefGoogle Scholar
  8. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol in press.
  9. Bueno CG, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, Helm A, Ronk A, Kühn I, Zobel M (2017) Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob Ecol Biogeogr 26:690–699. CrossRefGoogle Scholar
  10. Chaudhary V, Rúa M, Antoninka A et al (2016) Mycodb, a global database of plant response to mycorrhizal fungi. Sci Data 3:160028CrossRefGoogle Scholar
  11. Cosme M, Fernández I, Van der Heijden MGA, Pieterse CMJ (2018) Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci, 23, 577, 587
  12. Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119. CrossRefPubMedGoogle Scholar
  13. Dickie IA, Thomas MM, Bellingham PJ (2007) On the perils of mycorrhizal status lists: the case of Buddleja davidii. Mycorrhiza 17:687–688. CrossRefPubMedGoogle Scholar
  14. Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200. CrossRefGoogle Scholar
  15. Garnier E, Navas M-L, Grigulis K (2016) Plant functional diversity organism traits, community structure, and ecosystem properties. Oxford University Press, OxfordGoogle Scholar
  16. Gerz M, Bueno CG, Zobel M, Moora M (2016) Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci 27:89–99. CrossRefGoogle Scholar
  17. Gerz M, Guillermo Bueno C, Ozinga WA, Zobel M, Moora M (2018) Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J Ecol 106:254–264. CrossRefGoogle Scholar
  18. Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British flora. New Phytol 105:1–102CrossRefGoogle Scholar
  19. Hempel S, Gotzenberger L, Kuhn I et al (2013) Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94:1389–1399. CrossRefPubMedGoogle Scholar
  20. Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64. CrossRefGoogle Scholar
  21. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. CrossRefPubMedGoogle Scholar
  22. Joy JB (2013) Symbiosis catalyses niche expansion and diversification. Proc R Soc B Biol Sci 280:20122820CrossRefGoogle Scholar
  23. Kalwij JM, Robertson MP, Ronk A, Zobel M, Pärtel M (2014) Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. PLoS One 9:e85306. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Chang Biol 17:2905–2935. CrossRefPubMedCentralGoogle Scholar
  25. Kohout P (2017) Biogeography of ericoid mycorrhiza. In: Biogeography of mycorrhizal Symbiosis. Springer, pp 179–193Google Scholar
  26. Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 80:216–235CrossRefGoogle Scholar
  27. Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213:1597–1603. CrossRefPubMedGoogle Scholar
  28. Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36:1911–1915. CrossRefPubMedGoogle Scholar
  29. Lekberg Y, Rosendahl S, Pål AO (2015) The fungal perspective of arbuscular mycorrhizal colonization in ‘nonmycorrhizal’ plants. New Phytol 205:1399–1403. CrossRefPubMedGoogle Scholar
  30. Luginbuehl LH, Oldroyd GED (2017) Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol 27:R952–R963. CrossRefPubMedGoogle Scholar
  31. Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat 188:E113–E125. CrossRefPubMedGoogle Scholar
  32. Manjarrez M, Christophersen HM, Smith SE, Smith FA (2010) Cortical colonisation is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant: evidence from physiology and gene expression. Funct Plant Biol 37:1132–1142CrossRefGoogle Scholar
  33. Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig MC, Zobel M, Kühn I (2017) Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98:92–102CrossRefGoogle Scholar
  34. Menzel A, Hempel S, Manceur AM, Götzenberger L, Moora M, Rillig MC, Zobel M, Kühn I (2016) Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspect Plant Ecol Evol Syst 21:78–88. CrossRefGoogle Scholar
  35. Moora M (2014) Mycorrhizal traits and plant communities: perspectives for integration. J Veg Sci 25:1126–1132. CrossRefGoogle Scholar
  36. Orchard S, Standish RJ, Nicol D, Dickie IA, Ryan MH (2017) Sample storage conditions alter colonisation structures of arbuscular mycorrhizal fungi and, particularly, fine root endophyte. Plant Soil 4(12):35–42. CrossRefGoogle Scholar
  37. Osborne OG, De-Kayne R, Bidartondo MI et al (2018) Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol 217:1254–1266. CrossRefPubMedGoogle Scholar
  38. Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854CrossRefGoogle Scholar
  39. Peay KG (2016) The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst 47:143–164. CrossRefGoogle Scholar
  40. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200. CrossRefGoogle Scholar
  41. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  42. Roche SA, Carter RJ, Peakall R, Smith LM, Whitehead MR, Linde CC (2010) A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae): implications for orchid diversity. Am J Bot 97:1313–1327CrossRefGoogle Scholar
  43. Selosse M-A, Schneider-Maunoury L, Martos F (2018) Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol 217:968–972. CrossRefPubMedGoogle Scholar
  44. Sikes B (2010) When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signal Behav 5:763–765CrossRefGoogle Scholar
  45. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. ElsevierGoogle Scholar
  46. Sondergaard M, Laegaard S (1977) Vesicular-arbuscular mychorrhiza in some aquatic vascular plants. Nature 268:232–233CrossRefGoogle Scholar
  47. Song Y, Chen D, Lu K, et al (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786Google Scholar
  48. Swaty R, Michael HM, Deckert R, Gehring CA (2016) Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecol. :
  49. Tedersoo L (2017) Biogeography of mycorrhizal symbiosis. Ecological Studies 230. Springer, Tartu, p 566Google Scholar
  50. Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, pp 407–467Google Scholar
  51. Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431. CrossRefGoogle Scholar
  52. Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, Florida, USA, pp 5–25Google Scholar
  53. Vega C de, Arista M, Ortiz PL, Talavera S (2011) Mycorrhizal fungi and parasitic plants: reply. Am J Bot 98:597–601.
  54. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots†. Physiol Plant 125:393–404., 051021083431???
  55. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363Google Scholar
  56. Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68. CrossRefPubMedGoogle Scholar
  57. Willis KJ (2017) The state of the world’s plants report. UK, LondonGoogle Scholar
  58. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2013) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92. CrossRefPubMedGoogle Scholar
  59. Zobel M, Davison J, Edwards ME, Brochmann C, Coissac E, Taberlet P, Willerslev E, Moora M (2018) Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nat Commun 9:139. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zuur AF, Ieno EN, Walker NJ, et al (2009) Mixed effects models and extensions in ecology with RGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations