Advertisement

Amalgamation of aligned carbon nanostructures at low temperature and the synthesis of vertically aligned carbon nanofibers (CNFs)

  • Rizwan ShoukatEmail author
  • Muhammad Imran Khan
Technical Paper
  • 20 Downloads

Abstract

This research article discusses the amalgamation of different carbon nanostructures at low temperature and reports a highly reliable and efficient method for the growth of vertically aligned carbon nanofibers (CNFs). The inductively coupled plasma enhanced chemical vapor deposition method utilizes a low substrate temperature (approx. 650 °C) for the growth purpose using toluene as carbon source. First, this paper describes the experimental setup for the synthesis of different nanostructures, then the calibration procedures for the measurement accuracy of the system and then the synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Carbon nanofibers are characterized using SEM (scanning electron microscopy), EDX (energy-dispersive X-ray) and Raman spectroscopy.

Notes

References

  1. Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A (2015) Different technical applications of carbon nanotubes. Nanoscale Res Lett 10:358CrossRefGoogle Scholar
  2. Akasaka T, Watari F, Sato Y, Tohji K (2006) Apatite formation on carbon nanotubes. Mater Sci Eng, C 26:675–678CrossRefGoogle Scholar
  3. Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400CrossRefGoogle Scholar
  4. Bingshe X, Li T, Liu X, Lin X, Li J (2007) Growth of well-aligned carbon nanotubes in a plasma system using ferrocene solution in ethanol. Thin Solid Films 515:6726–6729CrossRefGoogle Scholar
  5. Chughtai MT, Alsaif H, Haleem MA, Alshammari AA, Khan MI, Usman M (2015) Holding arrangement for end polishing of single mode and other optical fibers. J Opt Technol 85(12):808–811CrossRefGoogle Scholar
  6. Endo M, Hayashi T, Ahm Kim Y, Muramatsu H (2006) Development and application of carbon nanotubes. Japn J Appl Phys 45(1):6AGoogle Scholar
  7. Ford N (2007) Plasma enhanced growth of carbon nanotubesGoogle Scholar
  8. Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592CrossRefGoogle Scholar
  9. Kariyawasam T (2005) Field emission of carbon nanotubes. Department of Physics, University of Cincinnati, Cincinnati, p 45221Google Scholar
  10. Khan MI, Lin F (2014a) Comparative analysis and design of harmonic aware low power latches and flip–flops. IEEE 10th International Conference on electron devices and solid-state circuits (EDSSC), Chengdu ChinaGoogle Scholar
  11. Khan MI, Lin F (2014b) Impact of transistor model accuracy on the harmonic spectra emitted by logic circuits. 12th IEEE International Conference on solid-state and integrated circuit technology (ICSICT), ChinaGoogle Scholar
  12. Khan MI, Buzdar AR, Lin F (2014) Ballistic transport modeling in advanced transistors. 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, ChinaGoogle Scholar
  13. Khan MI, Buzdar AR, Lin F (2014) Self-Heating and reliability issues in FinFET and 3D ICs. 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), ChinaGoogle Scholar
  14. Khan MI, Shoukat R, Mukherjee K, Dong H (2017) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol (Springer) 23(10):4391–4404CrossRefGoogle Scholar
  15. Khan MI, Shoukat R, Mukherjee K, Dong H (2018a) Analysis of harmonic contents of switching waveforms emitted by the ultra-high speed digital CMOS integrated circuits for use in future micro/nano systems applications. Microsyst Technol (Springer) 24(2):1201–1206CrossRefGoogle Scholar
  16. Khan MI, Dong H, Shabbir F, Shoukat R (2018b) Embedded passive components in advanced 3D chips and micro/nano electronic systems. J Microsyst Technol (Springer) 24(2):869–877CrossRefGoogle Scholar
  17. Lee KY, Katayama M, Honda S, Kuzuoka T, Miyake T, Terao Y, Lee JG, Mori H, Hirao T, Oura K (2003) Synthesis of aligned carbon nanofibers at 200 °C. Japn J Appl Phys 42(2):7BGoogle Scholar
  18. Melechko A, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301CrossRefGoogle Scholar
  19. Point S, Minea T, Besland M-P, Granier A (2006) Characterization of carbon nanotubes and carbon nitride nanofibres synthesized by PECVD. Eur Phys J Appl Phys 34:157–163CrossRefGoogle Scholar
  20. Ralchenko Y, Kramida AE, Reader J (2010) NIST ASD teamGoogle Scholar
  21. Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol (Springer) 23(12):5447–5453CrossRefGoogle Scholar
  22. Shoukat R, Khan MI (2018a) Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Electr Eng (Springer) 100(2):997–1002CrossRefGoogle Scholar
  23. Shoukat R, Khan MI (2018b) Design and development of a clip building block system for MEMS. Microsyst Technol (Springer) 24(2):1025–1031CrossRefGoogle Scholar
  24. Shoukat R, Khan MI (2018c) Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsyst Technol (Springer) 24(2):989–993CrossRefGoogle Scholar
  25. Shoukat R, Khan MI (2019) Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). Microsyst Technol (Springer).  https://doi.org/10.1002/slct.201802499 CrossRefGoogle Scholar
  26. Teo KBK, Lee S-B, Chhowalla M, Semet V, Binh VT, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204CrossRefGoogle Scholar
  27. Tzeng SS, Wang PL, Ting-Yu W, Chen KS, Chyou SD, Lee WT, Chen CS (2011) Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor. J Mater Res 21:2440–2443CrossRefGoogle Scholar
  28. Wei HW, Leou KC, Wei MT, Lin YY, Tsai CH (2005) Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition. J Appl Physi 98(4):044313CrossRefGoogle Scholar
  29. Wei S, Kanga WP, Davidson JL, Choi BK, Huang JH (2006) vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vac Sci Technol B Microelectron Nanometer Struct 24:1190CrossRefGoogle Scholar
  30. Xie S, Li W, Pan Z, Chang B, Sun L (2000) Carbon nanotube arrays. Mater Sci Eng A 286:11–15CrossRefGoogle Scholar
  31. Xu B, Deng H, Dai Y, Yang B (2007) Novel aerosol method for aligned carbon nanotubes synthesis. Trans Nonferrous Metals Soc China 17Google Scholar
  32. Zhou M, Luo P, Li A, Wu Y, Khan MI, Lyu J, Li F, Li G (2018) Fabrication of silica membrane through surface-induced condensation on porous block copolymer. Chem SELECT Commun 3(33):9694–9699Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microsystems Engineering, IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Department of Electrical Engineering, College of EngineeringUniversity of HailHailSaudi Arabia
  3. 3.Micro/-Nano Electronic System Integration R&D Center (MESIC)University of Science and Technology of China (USTC)HefeiChina

Personalised recommendations