Advertisement

Passive element free variation aware decision circuit for 40 Gb/s CDR application

  • Madhusudan Maiti
  • Anupama Paul
  • Suraj Kumar Saw
  • Alak MajumderEmail author
Technical Paper
  • 33 Downloads

Abstract

The signal integrity metrics such as jitter, noise, peak-to-peak signal swing and power dissipation play a pivotal role in determining the quality of high data rate on-chip wireline communication and a decision circuit is the most vital section of it. This article explores an area efficient 40 Gb/s configuration of passive element free current mode decision module implemented in 90 nm CMOS technology. The simulation using Cadence Virtuoso platform is carried out at a power supply of 1.2 V along with a clock frequency of 40 GHz and pseudo random bit sequence data input of (27 − 1) having 1 ns bit period. The device foot print of entire arrangement is (76 × 23) µm2, which reads a power dissipation, delay, PDP, peak-to-peak jitter and RMS jitter of 7.02 mW, 198.1 ps, 1.391 pJ, 58.00 ps and 13.12 ps respectively. Monte Carlo runs with ‘no skew’ and 5% process skew are performed at different corners to prove the robustness of the design. The whole circuit is finally validated at lower technology node like 28 nm UMC.

Notes

Acknowledgements

The authors thankfully acknowledge SMDP-C2SD project under MEITY Govt. of India providing CADENCE tool to carry out this work.

References

  1. Alioto M, Palumbo G (2006) Power-aware design techniques for nanometer MOS current-mode logic gates: a design framework. IEEE Circ Syst Mag New Ser 6(4):40–59Google Scholar
  2. Amamiya Y et al (2005) Low supply voltage operation of over 40 Gb/s digital Ics on parallel current switching latch circuitry. IEEE J Solid State Circ 40:2111–2117CrossRefGoogle Scholar
  3. Bespalko RD (2007) Transimpedance amplifier design using 0.18 um CMOS technology. MS Thesis, Queen’s UniversityGoogle Scholar
  4. Bonneau DP, Hauviller P, Vallet V (2007) Serializer/deserializer circuit for jitter sensitivity characterization. U.S. Patent No. 7,251,764Google Scholar
  5. Chalvatzis T et al (2006) A 40-Gb/s decision circuit in 90-nm CMOS. Solid-State Circuits Conference, 2006. ESSCIRC 2006. In: Proceedings of the 32nd European. IEEE, 2006Google Scholar
  6. Chalvatzis T et al (2006) A 40-Gb/s decision circuit in 90-nm CMOS. In: 2006 Proceedings of the 32nd European solid-state circuits conference. IEEE, 2006Google Scholar
  7. Chalvatzis T et al (2007) A low-noise 40-GS/s continuous-time bandpass delta-sigma ADC centered at 2 GHz for direct sampling receivers. IEEE J Solid-State Circ 42(5):1065–1075CrossRefGoogle Scholar
  8. Chu S-H et al (2015) A 22 to 26.5 Gb/s optical receiver with all-digital clock and data recovery in a 65 nm CMOS process. IEEE J Solid State Circ 50(11):2603–2612CrossRefGoogle Scholar
  9. Dickson TO, Beerkens R, Voinigescu SP (2005) A 2.5-V 45-Gb/s decision circuit using SiGe BiCMOS logic. IEEE J Solid-State Circ 40(4):994–1003CrossRefGoogle Scholar
  10. Dickson TO et al (2006) The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si (Ge)(Bi) CMOS high-speed building blocks. IEEE J Solid-State Circ 41(8):1830–1845CrossRefGoogle Scholar
  11. Guanghua S et al (2016) A 4-to-10.5 Gb/s continuous-rate digital clock and data recovery with automatic frequency acquisition. IEEE J Solid-State Circ 51(2):428–439CrossRefGoogle Scholar
  12. Heydari P, Mohanavelu R (2004) Design of ultrahigh-speed low-voltage CMOS CML buffers and latches. IEEE Trans VLSI Syst 12(10):1081–1093CrossRefGoogle Scholar
  13. Hsieh M, Sobelman GE (2008) Architectures for multi-gigabit wire-linked clock and data recovery. IEEE Circ Syst Mag 8:4CrossRefGoogle Scholar
  14. Jang I et al (2016) Power-performance tradeoff analysis of CML-based high-speed transmitter designs using circuit-level optimization. IEEE Trans Circ Syst I Reg Pap 63(4):540–550CrossRefGoogle Scholar
  15. Jeon H-J et al (2013) A bang-bang clock and data recovery using mixed mode adaptive loop gain strategy. IEEE J Solid-State Circ 48(6):1398–1415CrossRefGoogle Scholar
  16. Kapoor A, Yan H, Bashirullah R (2013) A current-density centric logical effort delay and power model for high-speed CML gates. IEEE Trans Circ Syst I Reg Pap 60(10):2618–2630MathSciNetCrossRefGoogle Scholar
  17. Liang B, Kwasniewski T, Chen D (2008) A 42-Gb/s Decision Circuit in 0.13 µm CMOS. In: Communication networks and services research conference, 2008. CNSR 2008. 6th Annual. IEEE, 2008Google Scholar
  18. Liang B, Kwasniewski T, Chen D (2008) A 42-Gb/s Decision Circuit in 0.13 µm CMOS. In: 6th annual communication networks and services research conference (cnsr 2008). IEEE, 2008Google Scholar
  19. Meghelli M (2005) A 43-Gb/s full-rate clock transmitter in 0.18um SiGe BiCMOS technology. IEEE J Solid-State Circ 40(10):2046–2050CrossRefGoogle Scholar
  20. Namrata S, Deb S (2015) Analysis and design guidelines for customized logic families in CMOS. In: VLSI design and test (VDAT), 2015 19th international symposium on. IEEE, 2015Google Scholar
  21. Pedram P et al (2011) High speed CML latch using active inductor in 0.18 μm CMOS technology. In: Electrical engineering (ICEE), 2011 19th Iranian conference on. IEEE, 2011Google Scholar
  22. Razavi B (2002) Challenges in the design high-speed clock and data recovery circuits. IEEE Commun Mag 40(8):94–101CrossRefGoogle Scholar
  23. Razavi B (2009) The role of PLLs in future wireline transmitters. IEEE Trans Circ Syst I Reg Pap 56(8):1786CrossRefGoogle Scholar
  24. Razavi B (2012) Design of integrated circuits for optical communications. John Wiley & Sons, OxfordGoogle Scholar
  25. Rylyakov A, Zwick T (2004) 96-GHz static frequency divider in SiGe bipolar technology. IEEE J Solid-State Circ 39(10):1712–1715CrossRefGoogle Scholar
  26. Sangwoo H et al (2015) A 10 Gbps SerDes for wireless chip-to-chip communication. In: SoC design conference (ISOCC), 2015 international. IEEE, 2015Google Scholar
  27. Siliang H et al (2010) A high speed low power interface for inter-die communication. In: Solid-State and integrated circuit technology (ICSICT), 2010 10th IEEE international conference on. IEEE, 2010Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Integrated Circuit and System (i-CAS) Lab, Department of ECENational Institute of Technology Arunachal PradeshYupiaIndia

Personalised recommendations