Advertisement

Residual stress compensated silicon nitride microcantilever array with integrated poly-Si piezoresistor for gas sensing applications

  • Manoj KandpalEmail author
  • Satya Narayan Behera
  • Jaspreet Singh
  • Vijay Palaparthy
  • Surinder Singh
Technical Paper
  • 18 Downloads

Abstract

This work reports a novel method of microfabrication for silicon nitride based piezoresistive microcantilever device, to minimize the residual stress induced bending. The microcantilever of dimension L × W ~ 250 × 100 µm2 with stack (Si3N4/Poly-Si/Si3N4/SiO2) thickness ~ 1 µm was realized, by using standard six masks and bulk silicon micromachining fabrication process. In order to compensate the residual inbuilt stress, asymmetric structure layers for microcantilever was proposed and the presence of thin oxide layer underneath the released microcantilever stack was used to control the bending. The surface profiler measurement results showed the curvature bending in the range of ~ 4 ± 3 µm. The microcantilever was characterized further to evaluate its physical parameters such as mechanical deflection sensitivity and spring constant. The deflection sensitivity and spring constant values were ~ 0.161 ppm/nm and ~ 0.2 N/m, respectively. Finally, the practical application of fabricated piezoresistive microcantilevers was demonstrated by using it for explosive vapors sensing.

Notes

Acknowledgements

The authors acknowledge all the support and encouragement received from principle of scientific advisor (PSA) office, Government of India and Indian Institute of Technology, Bombay for providing their electrical testing setup for characterization of devices. We would like to thank Mr. Sajal Mathur for optimization of poly silicon thin films, Mr. Ramesh Banoth and Mr. M. M. Zafar for useful technical discussions. We also acknowledge Indian Institute of Science, Bangalore for Atomic force microscopy and Central scientific instruments organization (CSIO), Chandigarh for providing vapor generator facility. We wish to acknowledge all the support received from MFD, AMNSD and VPD team members and Group Head-VMFG, Shri Manoj Wadhwa for this work at SCL.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Agarwal DK, Maheshwari N, Mukherji S, Rao VR (2016) Asymmetric immobilization of antibodies on piezo-resistive micro-cantilever surface. RSC Adv 6:17606–17616CrossRefGoogle Scholar
  2. Alvarez M, Lechuga LM (2010) Micro cantilever-based platforms as biosensing tools. Analyst 135:827–836CrossRefGoogle Scholar
  3. Bharadwaj R, Mukherji S, Mukherji S (2012) U-bend fiber optic sensor using 6-mercaptonicotinic acid (6-MNA) functionalized gold nanoparticles for detection of explosives RDX and TNT. In: International conference on fiber optics and photonics. ISBN: 978-1-4673-4718-1Google Scholar
  4. Boyer TP, Rossi C, Etienne ES, Scheid E (1998) Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J Vac Sci Technol 16:2003–2007CrossRefGoogle Scholar
  5. Chen C, Chen Y, Xu P, Li X (2016) Silicon micro-cantilever chemical sensors fabricated in double-layer silicon-on-insulator (SOI) wafer. Microsyst Technol 22:1959–1965CrossRefGoogle Scholar
  6. Cherian S, Gupta RK, Mullin BC, Thundat T (2003) Detection of heavy metal ions using protein-functionalized micro cantilever sensors. Biosens Bioelectron 19:411–416CrossRefGoogle Scholar
  7. Fang W, Wickert JA (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J Micromech Microeng 6:301CrossRefGoogle Scholar
  8. Gammelgaard L, Rasmussen PA, Calleja M, Vettiger P, Boisen A (2006) Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor. Appl Phys Lett 88:113508CrossRefGoogle Scholar
  9. Gilda NA, Patil S, Seena V, Joshi S, Thaker V, Thakur S, Anvesha A, Baghini MS (2011) Piezoresistive 6-MNA coated microcantilevers with signal conditioning circuits for electronic nose. In: IEEE asian solid-state circuits conference, November, 2011, ISBN: 978-1-4577-1785-7Google Scholar
  10. Guomin Z, Xinxin L, Zhixiang Z, Tiantian Y, Yuelin W, Zhenxing C, Songlin F (2007) Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression. Nanotechnology 18:255501CrossRefGoogle Scholar
  11. Hansen KM, Ji HF, Guanghua W, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73:1567–1571CrossRefGoogle Scholar
  12. Ji HF, Thundat T, Dabestani R, Brown GM, Britt FP, Bonnesen PV (2001) Ultrasensitive Detection of CrO4 2− using a Microcantilever Sensor. Anal Chem 73:1572–1576CrossRefGoogle Scholar
  13. Jung UG, Kuwana K, Ajiki Y, Takahashi H, Kan T, Takei Y, Noda K, Iwase E, Matsumoto K, Shimoyama I (2013) A photoresponse-compensated parallel piezoresistive cantilever for cellular force measurements. J Micromech Microeng 23:045015CrossRefGoogle Scholar
  14. Kale NS, Nag S, Pinto R, Rao VR (2009) Fabrication and characterization of a polymeric microcantilever with an encapsulated hotwire CVD polysilicon piezoresistor. J Microelectromech Syst 18:79–87CrossRefGoogle Scholar
  15. Kandpal M, Bandela AK, Hinge VK, Rao VR, Rao CP (2013) Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics. ACS Appl Mater Interfaces 5:13448–13456CrossRefGoogle Scholar
  16. Kandpal M, Adami A, Giacomozzi F, Zen M, Rao VR, Lorenzelli L (2017) Theoretical and experimental analysis of residual stress mitigation in piezoresistive silicon nitride cantilever. In: AISEM 2017, sensors and microsystems, pp 229–235Google Scholar
  17. Kooser A, Gunter LR, Delinger WD, Porter TL, Eastman MP (2004) Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuators B Chem 99:474–479CrossRefGoogle Scholar
  18. Lang HP, Berger R, Battiston F, Ramseyer JP, Meyer E, Andreoli C, Brugger J, Vettiger P, Despont M, Mezzacasa T, Scandella L, Güntherodt HJ, Gerber C, Gimzewski JK (1998) A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl Phys A 66:61–64CrossRefGoogle Scholar
  19. Loui A, Goericke FT, Ratto TV, Lee J, Hart BR, King PW (2008) The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing”. Sens Actuators A 147:516–521CrossRefGoogle Scholar
  20. Lutzenberger BJ, Dickensheets DL (2001) Vertical stiffening members for flatness control of surface micromachined structures. In: Proceedings of MOEMS and Miniaturized Systems II, p 4561Google Scholar
  21. Park SJ, Doll JC, Pruitt BL (2010a) Piezoresistive cantilever performance—part I: analytical model for sensitivity. J Microelectromech Syst 19:137–148CrossRefGoogle Scholar
  22. Park SJ, Doll JC, Pruitt BL (2010b) Piezoresistive cantilever performance—Part II: optimisation. J Microelectromech Syst 19:149–161CrossRefGoogle Scholar
  23. Patil JS, Duragkar N, Rao VR (2014) An ultra-sensitive piezoresistive polymer nano-composite micro cantilever sensor electronic nose platform for explosive vapor detection. Sens Actuators B 192:444–451CrossRefGoogle Scholar
  24. Pierson HO (1999) Handbook of chemical vapor deposition: principles, technology and applications. William Andrew Publishing, New YorkGoogle Scholar
  25. Rasmussen PA, Thaysen J, Hansen O, Eriksen SC, Boisen A (2003) Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97:371–376CrossRefGoogle Scholar
  26. Reddy CVB, Khaderbad MA, Gandhi S, Kandpal M, Patil S, Chetty KN, Rajulu KG, Chary PCK, Ravikanth M, Rao VR (2012) Piezoresistive SU-8 cantilever with Fe(III)porphyrin coating for CO sensing. IEEE Trans Nanotechnol 11:701–706CrossRefGoogle Scholar
  27. Sage E, Sansa M, Fostner S, Defoort M, Gély M, Naik AK, Morel R, Duraffourg L, Roukes ML, Alava T, Jourdan G, Colinet E, Masselon C, Brenac A, Hentz S (2018) Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat Commun 9:3283CrossRefGoogle Scholar
  28. Seena V, Fernandes A, Pant P, Mukherji S, Rao VR (2011) Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22:295501CrossRefGoogle Scholar
  29. Senesac L, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36CrossRefGoogle Scholar
  30. Sepaniak M, Datskos P, Lavrik N, Tipple C (2002) Micro cantilever transducers: a new approach in sensor technology. Anal Chem 74:569–575CrossRefGoogle Scholar
  31. Stemme G (1991) Resonant silicon sensors. J Micromech Microeng 1:113–125CrossRefGoogle Scholar
  32. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond 82:172CrossRefGoogle Scholar
  33. Tang Y, Fang J, Yan X, Ji HF (2004) Fabrication and characterization of SiO2 microcantilever for microsensor application. Sens Actuators B Chem 97:109–113CrossRefGoogle Scholar
  34. Toriiy A, Sasakiz M, Hane K, Okuma S (1996) A method for determining the spring constant of cantilevers for atomic force microscopy. J Measure Sci Technol 7:179–184CrossRefGoogle Scholar
  35. Wang S, Wang J, Zhu Y, Yang J, Yang F (2015) A new device for liver cancer biomarker detection with high accuracy. Sens Bio-Sens Res 4:40–45CrossRefGoogle Scholar
  36. Werner K (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137:1887–1892CrossRefGoogle Scholar
  37. Xu X, Thundat TG, Brown GM, Ji HF (2002) Detection of Hg2+ using micro cantilever sensors. Anal Chem 74:3611–3615CrossRefGoogle Scholar
  38. Yan X, Xu XK, Ji HF (2005) Glucose oxidase multilayer modified micro cantilevers for glucose measurement. Anal Chem 77:6197–6204CrossRefGoogle Scholar
  39. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6:583–586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Semi-Conductor Laboratory, Department of SpaceMohaliIndia
  2. 2.Indian Institute of TechnologyBombayIndia

Personalised recommendations