Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow

  • Mohsen Hajari
  • Amirali Ebadi
  • Mohammad Javad Farshchi Heydari
  • Morteza FathipourEmail author
  • Madjid Soltani
Technical Paper


Non-invasive separation of particles with different sizes and sensitivities has been a challenge and interest for point-of-care diagnostics and personalized treatment. Dielectrophoresis is widely known as a powerful technique to sort the particles and (most importantly to) distinguish cells and monitor their state without the need for biochemical tags. In this paper, a dielectrophoresis-based microchannel design is proposed which allows for continuous particle sorting and separation under the applied AC field. It is also practical to implement the platform for monitoring cell behavior irregularities caused by certain diseases toward diagnosis and treatment. In this regard, the device employs dielectrophoretic (DEP) force exerted on the particles by only two electrodes with oblique arrangement in the channel. The electrodes are arranged with a bevel angle to the fluid flow direction but they are not parallel and therefore a gradually decreasing electric field is achieved along the channel’s width. As a result, the dielectrophoretic force, acting on the particles of different sizes, would also gradually decrease along channels width which renders the necessary distinguishing lateral displacements of particles for separation. Therefore, the particles with different sizes can be sorted in a continuous-flow regime and be received at multiple outlet reservoirs with no need to turn the electric field on/off. The presented device is fabricated and evaluated in the experiment to prove its feasibility. Afterward, using numerical simulations, we investigate the optimum design parameters in the presented device to enhance device efficiency for separating particles with different size ranges.


Supplementary material

Supplementary material 1 (MP4 23535 kb)


  1. Andersson H, Van den Berg AJS (2003) Microfluidic devices for cellomics: a review. Chemical 92(3):315–325Google Scholar
  2. Armstrong AJ et al (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9:1007CrossRefGoogle Scholar
  3. Becker F et al (1994) The removal of human leukaemia cells from blood using interdigitated microelectrodes. J Phys D Appl Phys 27(12):2659CrossRefGoogle Scholar
  4. Bischoff F et al (2003) Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSep™). Clin Genet 63(6):483–489CrossRefGoogle Scholar
  5. Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427CrossRefGoogle Scholar
  6. Chen Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645CrossRefGoogle Scholar
  7. Collins DJ, Alan T, Neild AJLOAC (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab on a Chip 14(9):1595–1603CrossRefGoogle Scholar
  8. Dockery DW, Schwartz J, Spengler JDJER (1992) Air pollution and daily mortality: associations with particulates and acid aerosols. Environ Res 59(2):362–373CrossRefGoogle Scholar
  9. Doh I, Cho YHJS, Physical AA (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A Phys 121(1):59–65CrossRefGoogle Scholar
  10. Ebadi A et al (2019a) Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays. SN Appl Sci 1(10):1184CrossRefGoogle Scholar
  11. Ebadi A et al (2019b) A novel numerical modeling paradigm for bio particle tracing in non-inertial microfluidics devices. Microsyst Technol 2019:1–9Google Scholar
  12. Forbes TP, Forry SP (2012) Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 12(8):1471–1479CrossRefGoogle Scholar
  13. Fu AY et al (1999) A microfabricated fluorescence-activated cell sorter. Nature 17(11):1109Google Scholar
  14. Gascoyne PR, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92(1):22–42CrossRefGoogle Scholar
  15. Gascoyne PR et al (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309CrossRefGoogle Scholar
  16. Ghadami S et al (2017) Spiral microchannel with stair-like cross section for size-based particle separation. Microfluid Nanofluid 21(7):115CrossRefGoogle Scholar
  17. Guo MT et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155CrossRefGoogle Scholar
  18. Henkel T et al (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng 101(1–3):439–445CrossRefGoogle Scholar
  19. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23(16):2569–2582CrossRefGoogle Scholar
  20. Jackson EL, Lu H (2013) Advances in microfluidic cell separation and manipulation. Curr Opin Chem Eng 2(4):398–404CrossRefGoogle Scholar
  21. Joensson HN, Svahn HAJACIE (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192CrossRefGoogle Scholar
  22. Jones TB, Jones TB (2005) Electromechanics of particles. Cambridge University Press, CambridgeGoogle Scholar
  23. Jung Y-J et al (2017) Selective position of individual cells without lysis on a circular window array using dielectrophoresis in a microfluidic device. Microfluid Nanofluid 21(9):150CrossRefGoogle Scholar
  24. Kamali B et al (2018) Micro-lithography on paper, surface process modifications for biomedical performance enhancement. Colloids Surf A Physicochem Eng Aspects 555:389–396CrossRefGoogle Scholar
  25. Khoshmanesh K et al (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814CrossRefGoogle Scholar
  26. Kralj JG et al (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14):5019–5025CrossRefGoogle Scholar
  27. Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31(15):2622–2631CrossRefGoogle Scholar
  28. Lewpiriyawong N et al (2011) Microfluidic characterization and continuous separation of cells and particles using conducting poly (dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal Chem 83(24):9579–9585CrossRefGoogle Scholar
  29. Liu G et al (2019) Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip. Microfluid Nanofluid 23(2):23CrossRefGoogle Scholar
  30. Maria MS et al (2017) Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid Nanofluid 21(4):72CrossRefGoogle Scholar
  31. Morgan H, Green NG (2003) AC electrokinetics. Research Studies Press, UKGoogle Scholar
  32. Morgan H et al (2006) Single cell dielectric spectroscopy. J Phys D App Phys 40(1):61CrossRefGoogle Scholar
  33. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811CrossRefGoogle Scholar
  34. Podoynitsyn SN et al (2019) Barrier contactless dielectrophoresis: a new approach to particle separation. Sep Sci Plus 2(2):59–68CrossRefGoogle Scholar
  35. Prieto JL et al (2010) Dielectrophoretic separation of heterogeneous stem cell populations. In: 14th international conference on miniaturized systems for chemistry and life sciences (MicroTAS 2010), The NetherlandsGoogle Scholar
  36. Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557CrossRefGoogle Scholar
  37. Sackmann EK, Fulton AL, Beebe DJJN (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181CrossRefGoogle Scholar
  38. Sano MB et al (2011) Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Electrophoresis 32(22):3164–3171CrossRefGoogle Scholar
  39. Shafiee H et al (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10(4):438–445CrossRefGoogle Scholar
  40. Shapiro HM (2005) Practical flow cytometry. Wiley, New YorkGoogle Scholar
  41. So J-H, Dickey MD (2011) Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11(5):905–911CrossRefGoogle Scholar
  42. Song H et al (2008) Continuous-mode dielectrophoretic gating for highly efficient separation of analytes in surface micromachined microfluidic devices. J Micromech Microeng 18(12):125013CrossRefGoogle Scholar
  43. Song H et al (2015) Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip 15(5):1320–1328CrossRefGoogle Scholar
  44. Sun M et al (2016) Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes. Anal Chem 88(16):8264–8271CrossRefGoogle Scholar
  45. Tang SY et al (2015) Creation of liquid metal 3D microstructures using dielectrophoresis. Adv Func Mater 25(28):4445–4452CrossRefGoogle Scholar
  46. Voldman J (2006) Electrical forces for microscale cell manipulation. J Annu Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  47. Voldman J et al (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74(16):3984–3990CrossRefGoogle Scholar
  48. Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11(7):1280–1285CrossRefGoogle Scholar
  49. Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34(6):461–475CrossRefGoogle Scholar
  50. Wu Y et al (2017) Fluid pumping and cells separation by DC-biased traveling wave electroosmosis and dielectrophoresis. Microfluid Nanofluid 21(3):38CrossRefGoogle Scholar
  51. Yang J et al (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 71(5):911–918CrossRefGoogle Scholar
  52. Yoon YK et al (2003) Integrated vertical screen microfilter system using inclined SU-8 structures. In: The sixteenth annual international conference on micro electro mechanical systems. MEMS-03 Kyoto. IEEE. 2003. IEEEGoogle Scholar
  53. Zhang C et al (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396(1):401–420CrossRefGoogle Scholar
  54. Zhang J et al (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34CrossRefGoogle Scholar
  55. Zhao K et al. (2019) Continuous cell characterization and separation by microfluidic AC dielectrophoresis. Anal ChemGoogle Scholar
  56. Zhao K, Li D (2018) Tunable droplet manipulation and characterization by AC-DEP. ACS Appl Mater Interfaces 10(42):36572–36581CrossRefGoogle Scholar
  57. Zhao K, Li DJS, Chemical AB (2017) Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow. Sens Actuators B Chem 250:274–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohsen Hajari
    • 1
    • 2
  • Amirali Ebadi
    • 1
    • 2
  • Mohammad Javad Farshchi Heydari
    • 1
    • 2
    • 3
  • Morteza Fathipour
    • 1
    • 2
    Email author
  • Madjid Soltani
    • 3
    • 4
  1. 1.MEMS&NEMS Laboratory, Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  2. 2.Device Simulation and Modeling Laboratory, Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  3. 3.Department of Mechanical EngineeringK. N. Toosi, University of TechnologyTehranIran
  4. 4.Centre for Biotechnology and Bioengineering (CBB)University of WaterlooWaterlooCanada

Personalised recommendations