Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shape memory alloy based controllable multi-port microvalve

  • 68 Accesses

Abstract

This paper describes an innovative miniature multi-port valve with a thin foil of shape memory alloy (SMA) as actuator for switching and dosing gaseous and liquid media. The normally closed (NC) microvalve has two structured SMA actuators that are switched independently of each other and either two inputs and one output or one input and two outputs. In addition to switching the media in the 3/4-way arrangement, it can also be used with a flow sensor in a closed loop control for dosing. Furthermore, the valve design is layer-based so that individual components can be manufactured according to given requirements or using different manufacturing technologies depending on the batch size. The SMA multi-port microvalve showed flow rates of about 2300 ml/min (nitrogen gas) and about 45 ml/min (water) for an applied pressure difference of 200 kPa and a heating current of about 400 mA. For flow regulation a closed loop control was realized and evaluated for a pressure difference of 100 kPa and a setpoint value of 900 ml/min.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from (Chowdhury 2018)

Fig. 2
Fig. 3
Fig. 4

Adapted from (Johnson 1991, 1994)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Barth J, Krevet B, Kohl M (2010) A bistable shape memory microswitch with high energy density. Smart Mater Struct 19(9):094004. https://doi.org/10.1088/0964-1726/19/9/094004

  2. Barth J, Megnin C, Kohl M (2011) A bistable shape memory microvalve. In: Proceedings of IEEE MEMS 2011, Cancun, Mexico, pp 1067–1070

  3. Barth J, Megnin C, Kohl M (2012) A bistable shape memory alloy microvalve with magnetostatic latches. J Microelectromech Syst 21:76–84

  4. Braun S, Haasl S, Sadoon S, Ridgeway AS, van der Wijngaart W, Stemme G (2005) Small footprint knife gate microvalves for large flow control. In: Proceedings of Transducers 05, Seoul, Korea, pp 329–332

  5. Bruus H (2008) Theoretical microfluidics. Oxford-University Press

  6. Chluba C, Ge W, Lima de Miranda R, Strobel J, Kienle L, Quandt E, Wuttig M (2015) Ultralow-fatigue shape memory alloy films. Science 348(6238):1004–1007

  7. Chowdhury P (2018) Frontiers of theoretical research on shape memory alloys: a general overview. Shape Mem Superelasticity 4(1):26–40

  8. Fischer AC, Gradin H, Braun S, Schröder S, Stemme G, Niklaus F (2011) Wafer-level integration of NiTi shape memory alloy wires for the fabrication of microactuators using standard wire bonding technology. In: 2011 IEEE 24th international conference on micro electro mechanical systems, pp 348–351

  9. Gradin H, Braun S, Stemme G, van der Wijngaart W (2012) SMA microvalves for very large gas flow control manufactured using wafer-level eutectic bonding. IEEE Trans Ind Electron 59:4895–4906

  10. Grund T, Guerre R, Despont M, Kohl M (2008) Transfer bonding technology for batch fabrication of SMA microactuators. Eur Phys. J Spec Top 158:237–242

  11. Grund T, Megnin C, Barth J, Kohl M (2009) Batch fabrication of shape memory actuated polymer microvalves by transfer bonding techniques. J Microelectron Electron Packag 6:1–9

  12. https://www.memetis.com/

  13. https://www.kit.edu/

  14. https://www.openfoam.com/

  15. Johann Rupitsch S (2017) Piezoelectric sensors and actuators: fundamentals and applications

  16. Johnson D (1991) Vacuum-deposited TiNi shape memory film: characterization and applications in microdevices. JMM 1(1):34

  17. Johnson D (1994) Shape memory alloy film actuated microvalve (US5325880 A). Patent

  18. Kim H, Najafi K (2008) Electrostatic hydraulic three-way gas microvalve for high-pressure applications. In: Twelfth international conference on miniaturized systems for chemistry and life sciences

  19. Lima de Miranda R, Zamponi C, Quandt E (2012) Micropatterned freestanding superelastic TiNi films. Eng Mater 15:66–69

  20. Megnin C, Kohl M (2014) Shape memory alloy microvalves for a fluidic control system. J. Micromech Microeng 24:25001

  21. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:13–39

  22. Ölander A (1932) The crystal structure of AuCd. Crystalline Materials

  23. Rao A, Srinivasa AR, Reddy JN (2015) Design of shape memory alloy (SMA) actuators. Springer

  24. Ray C, Sloan C, Johnson D, Busch J, Petty B (1992) A silicon-based shape memory alloy microcvalve. MAt Res Soc Symp Proc 276:161–166

  25. Thielicke E, Obermeier E (2000) Microactuators and their technologies. Mechatronics 10(4):431–455

  26. Yang B, Wang B, Schomburg WK (2010) A thermopneumatically actuated bistable microvalve. J Micromech Microeng 20:1–8

Download references

Acknowledgements

This work was performed at the Institute of Microstructure Technology (IMT) at the Karlsruhe Institute of Technology (KIT) and the memetis GmbH. The authors thank M.Sc. Florian Brüderlin and Dr. Dario Mager for providing lab equipment and helpful support.

Author information

Correspondence to Christof Megnin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Megnin, C., Moradi, B., Zuern, J. et al. Shape memory alloy based controllable multi-port microvalve. Microsyst Technol 26, 793–800 (2020). https://doi.org/10.1007/s00542-019-04614-w

Download citation