Advertisement

Anomalous Stokes shift of colloidal quantum dots and their influence on solar cell performance

  • J. E. Pelayo-CejaEmail author
  • A. Zazueta-Raynaud
  • R. Lopez-Delgado
  • M. E. Alvarez-Ramos
  • E. Saucedo-Flores
  • R. Ruelas-Lepe
  • F. Orona-Magallanes
  • R. Guerrero-Gonzalez
  • A. Ayon
Technical Paper
  • 41 Downloads

Abstract

We report an anomalous Stokes shift effect observed in colloidal solutions containing down-shifting Carbon quantum dots (CQDs) of different sizes that is expected to have a positive influence on the power conversion efficiency of photovoltaic structures. Specifically, with an excitation wavelength of 390 nm, individual colloidal solutions of CQDs whose diameter was determined by the applied current during synthesis, exhibited photoluminescent (PL) emission wavelength peaks centered at 420 nm. However, the colloidal solution comprising the mixture of all the previously synthesized CQDs of different diameters was observed to have an anomalous PL Stokes shift centered at 515 nm. Furthermore, the aforementioned anomalous SSE was also observed in CdTe QDs when added to the CQD mixed-solution (CMS). Thus, whereas a mixture of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered at 555 nm, the peak was observed to have an anomalous Stokes shift centered at 580 nm when combined with the CMS. Quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths. Subsequently, the synthesized QDs were dispersed in a polymeric layer of PMMA and incorporated on functional and previously characterized solar cells, to quantify their influence in the electrical performance of the photovoltaic devices. The observations indicate an improvement in the PCE of 4.6% when incorporating Carbon QDs, 2.9% with CdTe QDs and 4.8% when employing both C and CdTe QDs.

Notes

Acknowledgements

We thank the US Army Research Office, for the financial support provided for this project (Grant W911NF-13-1-0110), National Science Foundation Grant No. ECCS 1650571 and CONACYT for a student fellowship.

References

  1. Alam AM, Park BY, Ghouri ZK, Park M, Kim HY (2015) Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17(7):3791–3797CrossRefGoogle Scholar
  2. Ayón A, Tronco-Jurado U, Lopez-Delgado R, Sharma M, Saucedo-Flores E, Alvarez-Ramos E (2015) Influence of Au/Ag nanostars and CdTe quantum dots on photon manipulation. In: Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on. IEEE, pp 1436–1439Google Scholar
  3. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800CrossRefGoogle Scholar
  4. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Bawendi MG et al (1997) (CdSe) ZnS core − shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475CrossRefGoogle Scholar
  5. Do S, Kwon W, Kim YH, Kang SR, Lee T, Lee TW, Rhee SW (2016) N, S-induced electronic states of carbon nanodots toward white electroluminescence. Adv Opt Mater 4(2):276–284CrossRefGoogle Scholar
  6. Fuyuno N, Kozawa D, Miyauchi Y, Mouri S, Kitaura R, Shinohara H, Matsuda K et al. (2013). Size-dependent luminescence properties of chromatographically-separated graphene quantum dots. arXiv preprint. arXiv:1311.1684
  7. Hirst LC, Ekins-Daukes NJ (2011) Fundamental losses in solar cells. Prog Photovoltaics Res Appl 19(3):286–293CrossRefGoogle Scholar
  8. Hodgson SD, Brooks WS, Clayton AJ, Kartopu G, Barrioz V, Irvine SJ (2013) Enhancing blue photoresponse in CdTe photovoltaics by luminescent down-shifting using semiconductor quantum dot/PMMA films. Nano Energy 2(1):21–27CrossRefGoogle Scholar
  9. Kurtin J (2011) Improved solar cell efficiency through the use of an additive nanostructure-based optical downshifter. Contract 303:275–3000Google Scholar
  10. Kwon W, Kim YH, Lee CL, Lee M, Choi HC, Lee TW, Rhee SW (2014) Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett 14(3):1306–1311CrossRefGoogle Scholar
  11. Kwon W, Do S, Kim JH, Jeong MS, Rhee SW (2015) Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci Rep 5:12604CrossRefGoogle Scholar
  12. Kwon W, Kim YH, Kim JH, Lee T, Do S, Park Y, Rhee SW et al (2016) High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Sci Rep 6:24205CrossRefGoogle Scholar
  13. Li H, He X, Huang H, Liu Y, Lian S (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem 122(26):4532–4536CrossRefGoogle Scholar
  14. McIntosh KR, Lau G, Cotsell JN, Hanton K, Bätzner DL, Bettiol F, Richards BS (2009) Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog Photovoltaics Res Appl 17(3):191–197CrossRefGoogle Scholar
  15. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102(29):5566–5572CrossRefGoogle Scholar
  16. Pelayo E, Zazueta A, Lopez R, Saucedo E, Ruelas R, Ayon A (2016a) Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots. Mater Renew Sustain Energy 5(2):1–7CrossRefGoogle Scholar
  17. Pelayo E, Zazueta A, López-Delgado R, Saucedo E, Ruelas R, Ayón A (2016) Red-shift of the photoluminescent emission peaks of CdTe quantum dots due to the synergistic interaction with carbon quantum dot mixtures. In: Journal of Physics: Conference Series, vol 773, no. 1. IOP Publishing, pp 012053Google Scholar
  18. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Vithayathil SA et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849CrossRefGoogle Scholar
  19. Saucedo-Flores E, Ruelas R, Rangel V, Tronco U, Ayón A (2014) Modelado del confinamiento y la luminiscencia en nanopartículas de seleniuro y telururo de cadmio. Rev Iberoam Cien 1(7):113–120Google Scholar
  20. Taki M (2013) Structural and optical properties of cadmium telluride CdXTe1-Xthin film by evaporate. Int J Appl Innov Eng Manage 2(5):413–417Google Scholar
  21. Tan D, Zhou S, Shimotsuma Y, Miura K, Qiu J (2014) Effect of UV irradiation on photoluminescence of carbon dots. Optical Mater Express 4(2):213–219CrossRefGoogle Scholar
  22. Tronco-Jurado U, Saucedo-Flores E, Ruelas R, López R, Alvarez-Ramos ME, Ayón AA (2015) Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance. Microsyst Technol 23(9):3945–3953CrossRefGoogle Scholar
  23. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939CrossRefGoogle Scholar
  24. Warner JH, Hoshino A, Yamamoto K, Tilley R (2005) Water-soluble photoluminescent silicon quantum dots. Angewandte chemie. Angew Chem 117(29):626–4630CrossRefGoogle Scholar
  25. Wu S, Dou J, Zhang J, Zhang S (2012) A simple and economical one-pot method to synthesize high-quality water soluble CdTe QDs. J Mater Chem 22(29):14573–14578CrossRefGoogle Scholar
  26. Yuan Z, Yang P, Cao Y (2012) Time-resolved photoluminescence spectroscopy evaluation of CdTe and CdTe/CdS quantum dots. ISRN Spectrosc.  https://doi.org/10.5402/2012/894385 Google Scholar
  27. Zhang W, Dai D, Chen X, Guo X, Fan J (2014) Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption. Appl Phys Lett 104(9):091902CrossRefGoogle Scholar
  28. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. E. Pelayo-Ceja
    • 1
    • 2
    • 3
    Email author
  • A. Zazueta-Raynaud
    • 1
    • 3
  • R. Lopez-Delgado
    • 1
    • 3
  • M. E. Alvarez-Ramos
    • 3
  • E. Saucedo-Flores
    • 2
  • R. Ruelas-Lepe
    • 2
  • F. Orona-Magallanes
    • 1
    • 2
  • R. Guerrero-Gonzalez
    • 1
    • 2
  • A. Ayon
    • 1
  1. 1.MEMS Research Lab, Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Departamento de FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations