High Q 2D-length extension mode resonators for potential time–frequency applications

  • Paul ChapellierEmail author
  • Pierre Lavenus
  • Olivier Le Traon
  • Bernard Dulmet
Technical Paper


This paper presents recent advances on two dimensional length-extension mode (2D-LEM) quartz resonators providing high quality (Q) factor on resonances at a few MHz. The resonators have been collectively manufactured using one or two steps quartz deep reactive-ion etching (DRIE) processes. These resonators combine the intrinsic qualities of quartz in comparison to silicon (i.e. high Q factor, low temperature sensitivity and piezoelectricity) and the advantages of microelectromechanical systems (MEMS) resonators: small dimensions, low power consumption and collective processes. Samples vibrating at frequencies f of 2.2, 3 and 4.5 MHz have shown promising results with very high Q factor. Q factor as high as 180,000 for fundamental mode vibrating at 2.2 MHz and 89,000 for harmonic mode at 8.9 MHz were measured which lead to quality factor and resonance frequency products (Q·f) figure of merit near 1012 Hz at the state of the art for 2D-LEM quartz resonators and the higher Q factor measured for DRIE made quartz resonators. Two designs, several dimensions and two processes have been investigated. Two main limiting damping mechanisms were identified and one of them is strongly linked to the technological limits of the etching process.



This work is partially supported by the Centre National d’Etudes Spatiales CNES.


Journal article

  1. Abe T, Esashi M (2000) One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE. Sens Actuators A 82:139–143. CrossRefGoogle Scholar
  2. Akhiezer A (1939) On the absorption of sound in solids. J Phys (Moscow) 1(1):277–287zbMATHGoogle Scholar
  3. Connell A, Hofheinz M, Ansmann M et al (2010) Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289):697–703. CrossRefGoogle Scholar
  4. Ghaffari S, Chandorkar SA, Wang Q, Ng EJ, Ahn CH, Hong V, Yang Y, Kenny TW (2013) Quantum limit of quality factor in silicon micro and nano mechanical resonators. Sci Rep 3:3244. CrossRefGoogle Scholar
  5. HyunHo D, JungHun K, SeokHuyn L, KiWoong W (1996) Mechanism of selective SiO2/Si etching with fluorocarbon gases (CF4, C4F8) and hydrogen mixture in electron cyclotron resonance plasma etching system. J Vac Sci Technol A 14:2827. CrossRefGoogle Scholar
  6. Jokic I, Frantlovix M, Djuric Z, Dukic ML (2015) RF MEMS/NEMS resonators for wireless communication systems and adsorption–desorption phase noise. Electron Energ 28(3):345–381. Google Scholar
  7. Kaajakari V, Kosikinen JK, Mattila T (2005) Phase noise in capacitively coupled micromechanical oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 52(12):2322–2331. CrossRefGoogle Scholar
  8. Khosla KE, Vanner MR, Ares N, Laird EA (2018) Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator. Phys Rev X 8(2):1–15. Google Scholar
  9. Kutsuwada H et al (2017) Fabrication of a true-Gaussian-shaped quartz crystal resonator. Sens Actuators A Phys 260:58–61. CrossRefGoogle Scholar
  10. Le Foulgoc B, Bourouina T, Le Traon O, Bosseboeuf A, Marty F, Breluzeau Grandchamp JP, Masson S (2006) Highly decoupled single-crystal silicon resonators: an approach for the intrinsic quality factor. J Micromech Microeng 16:s45–s53. CrossRefGoogle Scholar
  11. Le Traon O, Masson S, Chartier C, Janiaud D (2010) LGS and GaPO4 piezoelectric crystals: new results. Solid State Sci 12:318–324. CrossRefGoogle Scholar
  12. Nguyen CTC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 54(2):251–270. CrossRefGoogle Scholar
  13. Pelle R, Hedlund C, Katardjiev IV, Bäcklund Y (1998) Etch rates of crystallographic planes in Z-cut quartz—experiments and simulations. J Micromech Microeng 8:1–6. CrossRefGoogle Scholar
  14. Pirkkalainen JM, Damskagg E, Brandt M, Massel F, Sillanpaa MA (2015) Squeezing of quantum noise of motion in a micromechanical resonator. Phys Rev Lett 115:243601. CrossRefGoogle Scholar
  15. Rivière R, Deléglise Weis S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ (2011) Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys Rev A 83(063835):1–9. Google Scholar
  16. Sankaran A, Kushner MJ (2004) Integrated feature scale modeling of plasma processing of porous and solid SiO2. I. Fluorocarbon etching. J Vac Sci Technol A Vac Surf Films 22(4):1242. CrossRefGoogle Scholar
  17. Van Beek JTM, Puers R (2012) A review of MEMS oscillators for frequency reference and timing applications. J Micromech Mircroeng 22:013001. CrossRefGoogle Scholar
  18. Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated Lamé mode resonator with f-Q product of 2.23 × 1013 Hz. IEEE Electron Dev Lett 36(10):1079–1081. CrossRefGoogle Scholar

Proceeding-Article by DOI

  1. Bourgeteau B, Lévy R, Janiaud D, Lavenus P, Le Traon O (2015) Quartz resonator for MEMS oscillator. In: 2014 European frequency and time forum, EFTF 2014, pp 286–289.
  2. Bourgeteau-Verlhac B, Lévy R, Perrier T, Lavenus P, Guérard J, Le Traon O (2016) Gold thin film viscoelastic losses of a length extension mode resonator. In: Eur. freq. time forum, pp 1–4.
  3. Boy JJ, Tavernier H, Vacheret X, Laroche T, Clairet A (2011) Collective fabrication of 20 MHz resonators by deep reactive ion etching on 3″ quartz wafers. In: Proceedings of the IEEE international frequency control symposium and exposition, pp 3–7.
  4. Dinger RJ (1981) A miniature quartz resonator vibrating at 1 MHz. In: Proc. 35th ann. freq control symposium, pp 144–148.
  5. Grousset S et al (2014) Quartz-based vibrating MEMS fabricated using a wafer-bonding process with sealed cavities, pp 5–8.
  6. Kamijo A et al (2014) Wafer-level quartz dry etching technology. In: IFCS 2014—2014 IEEE international frequency control symposium, proceedings, vol 1035, pp 6–9.
  7. Kawashima H, Nakazato M (1990) Variational analysis of new shape length extensional mode quartz crystal resonator taking account of lateral motion. In: Proc. 35th ann. symp. freq. control, pp 378–386.
  8. Kubena RL et al (2017) A fully integrated quartz MEMS VHF TCXO. In: IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 3010(c), pp 3–7.
  9. Le Traon O, Bahriz M, Ducloux O, Masson S, Janiaud D (2011) A micro-resonator for fundamental physics experiments and its possible interest for time and frequency applications. In: Joint conference of the IEEE international frequency control and the European frequency and time forum (FCS) proceedings.
  10. Vig JR (2016) Quartz crystal resonators and oscillators for frequency control and timing applications-a tutorial, July 2016 Rev.


  1. Brand O, Dufour I, Heinrich SM, Josse F (2015) Resonant MEMS–fundamentals, implementation and application, 1st edn. Wiley-VCH Verlag & Co. KGaA, Weinheim, pp 55–71CrossRefGoogle Scholar


  1. Le Traon O (2013) Structure plane de résonateur mécanique découplé par des vibrations de flexion et d’extension compression. No. 13/00322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ONERA The French Aerospace Lab, Physics, Space, Environment, Instrumentation Department, Sensors and Microtechnology UnitChâtillonFrance
  2. 2.Time and Frequency DepartmentFEMTO-ST Institute, UMR CNRS 6174BesançonFrance

Personalised recommendations