Analysis of structural parameters on sensitivity of black phosphorus junctionless recessed channel MOSFET for biosensing application

  • Ajay Kumar
  • Neha Gupta
  • M. M. Tripathi
  • Rishu ChaujarEmail author
Technical Paper


This paper presents a technology computer-aided design analysis of an ultrasensitive black phosphorus junctionless recessed channel MOSFET as a biosensor. A nano cavity gap is embedded in the gate insulator region (for molecules immobilization) due to which gate capacitance changes owing to the accumulation of different molecules which reflects the deviation in threshold voltage. Higher sensitivity (1.7) is achieved for protein at low Vds (0.2 V) in comparison to streptavidin (1.17) and Biotin (1.24). Further, the effect of cavity gap length and oxide thickness variation is also examined. All the results pave the way for early detection techniques of protein-related diseases such as Alzheimer’s diseases, ovarian cancer and coronary artery disease with the existing complementary metal–oxide–semiconductor technology.



The authors are thankful to Jaypee Institute of Information Technology and Delhi Technological University and for supporting this work.


  1. Ahn J-H, Choi S-J, Han J-W, Park TJ, Lee SY, Choi Y-K (2010) Double-gate nanowire field effect transistor for a biosensor. Nano Lett 10(8):2934–2938CrossRefGoogle Scholar
  2. Azmi MM, Tehrani Z, Lewis R, Walker K-A, Jones D, Daniels D, Doak S, Guy O (2014) Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron 52:216–224CrossRefGoogle Scholar
  3. Bergveld P (1986) The development and application of FET-based biosensors. Biosensors 2(1):15–33CrossRefGoogle Scholar
  4. Cao MS, Shu JC, Wang XX, Wang X, Zhang M, Yang HJ, Fang XY, Yuan J (2019a) “Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Annalen der Physik 531(4):1800390CrossRefGoogle Scholar
  5. Cao MS, Wang XX, Zhang M, Shu JC, Cao WQ, Yang HJ, Fang XY, Yuan J (2019b) Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater 29(1807398):1–54Google Scholar
  6. Castellanos-Gomez A, Vicarelli L, Prada E, Island JO, Narasimha-Acharya K, Blanter SI, Groenendijk DJ, Buscema M, Steele GA, Alvarez J (2014) Isolation and characterization of few-layer black phosphorus. 2D Materials 1(2):025001CrossRefGoogle Scholar
  7. Chaujar R, Kaur R, Saxena M, Gupta M, Gupta R (2008) Laterally amalgamated DUal material GAte concave (L-DUMGAC) MOSFET for ULSI. Microelectron Eng 85(3):566–576CrossRefGoogle Scholar
  8. Colinge J, Lee C, Akhavan ND, Yan R, Ferain I, Razavi P, Kranti A, Yu R (2011) Junctionless transistors: physics and properties. In: Semiconductor-on-insulator materials for nanoelectronics applications. Springer, pp 187–200Google Scholar
  9. Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A (2014) Tunable transport gap in phosphorene. Nano Lett 14(10):5733–5739CrossRefGoogle Scholar
  10. Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978CrossRefGoogle Scholar
  11. Kumar A, Gupta N, Chaujar R (2016a) Analysis of novel transparent gate recessed channel (TGRC) MOSFET for improved analog behaviour. Microsyst Technol 22(11):2665–2671CrossRefGoogle Scholar
  12. Kumar A, Gupta N, Chaujar R (2016b) TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron J 49:36–42CrossRefGoogle Scholar
  13. Kumar A, Tripathi M, Chaujar R (2017) Investigation of parasitic capacitances of In2O5Sn gate electrode recessed channel MOSFET for ULSI switching applications. Microsyst Technol 23(12):5867–5874CrossRefGoogle Scholar
  14. Kumar A, Tripathi MM, Chaujar R (2018a) Ultralow-power dielectric-modulated nanogap-embedded sub-20-nm TGRC-MOSFET for biosensing applications. J Comput Electron 17(4):1807–1815CrossRefGoogle Scholar
  15. Kumar A, Tripathi M, Chaujar R (2018b) Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications. Superlattices Microstruct 116:171–180CrossRefGoogle Scholar
  16. Lai WA, Lin CH, Yang YS, Lu MS (2012) Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors. Biosens Bioelectron 35(1):456–460CrossRefGoogle Scholar
  17. Lam K-T, Dong Z, Guo J (2014) Performance limits projection of black phosphorous field-effect transistors. IEEE Electron Device Lett 35(9):963–965CrossRefGoogle Scholar
  18. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Peide DY (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041CrossRefGoogle Scholar
  19. Mahshid SS, Camiré SB, Ricci F, Vallée-Bélisle A (2015) A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood. J Am Chem Soc 137(50):15596–15599CrossRefGoogle Scholar
  20. Sahay S, Kumar MJ (2016) Realizing efficient volume depletion in SOI junctionless FETs. IEEE J Electron Devices Soc 4(3):110–115CrossRefGoogle Scholar
  21. Schuck P, Boyd LF, Andersen PS (1999) Measuring protein interactions by optical biosensors. Curr Protoc protein Sci 17(1):20.2.1–20.2.22CrossRefGoogle Scholar
  22. Silvaco I (2011) ATLAS user’s manual. Santa Clara, CA, Ver, vol 5Google Scholar
  23. Sreelal S, Lau C, Samudra G (2002) Parasitic capacitance characteristics of deep submicrometre grooved gate MOSFETs. Semicond Sci Technol 17(3):179CrossRefGoogle Scholar
  24. Vu XT, Eschermann JF, Stockmann R, GhoshMoulick R, Offenhäusser A, Ingebrandt S (2009) “Top-down processed silicon nanowire transistor arrays for biosensing. Phys Status Solidi (a) 206(3):426–434CrossRefGoogle Scholar
  25. Xiao-Hua M, Yue H, Bao-Gang S, Hai-Xia G, Hong-Xia R, Jin-Cheng Z, Jin-Feng Z, Xiao-Ju Z, Wei-Dong Z (2006) Fabrication and characterization of groove-gate MOSFETs based on a self-aligned CMOS process. Chin Phys 15(1):195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ajay Kumar
    • 1
  • Neha Gupta
    • 2
  • M. M. Tripathi
    • 3
  • Rishu Chaujar
    • 3
    Email author
  1. 1.ECE DepartmentJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Applied Science and HumanityADGITMNew DelhiIndia
  3. 3.Delhi Technological UniversityDelhiIndia

Personalised recommendations