Metamodel assisted evolution strategies for global optimization of solder joints reliability in embedded mechatronic devices

  • Hamid HamdaniEmail author
  • Bouchaïb Radi
  • Abdelkhalak El Hami
Technical Paper


This paper proposes a Kriging assisted covariance matrix adaptation evolution strategy (AK-CMA-ES) for optimization of mechatronics device structures. The objective of the proposed method is to design reliable structures with reduced computational cost of the multiphysics finite element simulation. The Finite element model intends to analyze the sequence of failure events in mechatronic devices. This numerical model is used to estimate the thermal cycles to failure. Subsequently, the AK-CMA-ES optimization process is performed in order to improve the performance of structural design of mechatronic systems and to find the best designs with safety and reasonable computational costs. The proposed method couple the kriging metamodel with the covariance matrix adaptation evolution strategy (CMA-ES). Kriging metamodel is used to replace the finite element simulation in order to overcome the computational cost of finite element model simulation. Kriging is used together with CMA-ES and sequentially updated and its quality is measured according to its ability in the ranking of the population through approximate ranking procedure (ARP). The application of this method in the optimization of mechatronic systems proves its efficiency and ability to improve the performance of mechatronic systems with avoiding the problem of tedious computation.



The authors would like to thank PHC Toubkal/17/43 integrated action Morocco France for their financial support for the realization of this work.


  1. Anand L (1982) Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J Eng Mater Technol Trans ASME 104(1):12–17CrossRefGoogle Scholar
  2. Aoues Y, Makhloufi A, Pougnet P, El Hami A (2012) Probabilistic assessment of thermal fatigue of solder joints in mechatronic packaging. In: Proceedings of the 1st international symposium on uncertainty quantification and stochastic modeling, Maresias, SPGoogle Scholar
  3. Bäck T, Foussette C, Krause P (2013) Contemporary evolution strategies. Springer, New YorkCrossRefzbMATHGoogle Scholar
  4. Branke J, Schmidt C (2005) Faster convergence by means of fitness estimation. Soft computing-A fusion of foundations, methodologies and applications 9(1):13–20Google Scholar
  5. El Hami A, Pougnet P (2015) Embedded mechatronic systems, vol 2. Elsevier, AmsterdamGoogle Scholar
  6. El Hami A, Radi B (2011) Comparison study of different reliability-based design optimization approaches. In: Advanced materials research, vol 274, pp 113–121. Trans Tech PublGoogle Scholar
  7. El Hami A, Radi B (2013) Uncertainty and optimization in structural mechanics. Wiley, AmsterdamCrossRefGoogle Scholar
  8. El Maani R, Makhloufi A, Radi B, El Hami A (2018) Reliability-based design optimization with frequency constraints using a new safest point approach. Eng Optim 50(10):1715–1732MathSciNetCrossRefGoogle Scholar
  9. Grieu M (2010) Étude de la fatigue des joints brasés de composants électroniques soumis á des sollicitations thermomécaniques, vibratoires et combinées. PhD thesis, École Nationale Supérieure des Mines de ParisGoogle Scholar
  10. Guide A (2015) ANSYS structural analysis guideGoogle Scholar
  11. Hamdani H, Radi B, El Hami A (2017) Métamodélisation pour une conception robuste des systèmes mécatroniques. Incertitudes et fiabilité des systèmes multiphysiques 2(Numéro 2):10Google Scholar
  12. Hansen N (2016) The CMA evolution strategy: a tutorial. arXiv:1604.00772
  13. Hossain MM, Jagarkal SG, Agonafer D, Lulu M, Reh S (2007) Design optimization and reliability of PWB level electronic package. J Electron Packag 129(1):9–18CrossRefGoogle Scholar
  14. Huang C (2017) Kriging-assisted evolution strategy for optimization and application in material parameters identification. PhD thesis, Rouen, INSAGoogle Scholar
  15. Huang C, Radi B, El Hami A, Bai H (2018) CMA evolution strategy assisted by kriging model and approximate ranking. Appl Intell 48(11):4288–4304CrossRefGoogle Scholar
  16. Jannoun M, Aoues Y, Pagnacco E, Pougnet P, El-Hami A (2017) Probabilistic fatigue damage estimation of embedded electronic solder joints under random vibration. Microelectron Reliab 78:249–257CrossRefGoogle Scholar
  17. JEDEC Standard (2000) Temperature cycling, JESD22-A104-B. JEDEC Solid state technology association, July 2000Google Scholar
  18. Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput A Fusion Found Methodol Appl 9(1):3–12Google Scholar
  19. Jin Y (2011) Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evolut Comput 1(2):61–70CrossRefGoogle Scholar
  20. Jin Y, Hüsken M, Sendhoff B (2003) Quality measures for approximate models in evolutionary computation. GECCO, pp 170–173Google Scholar
  21. Jin Y, Olhofer M, Sendhoff B (2000) On evolutionary optimization with approximate fitness functions. In: Proceedings of the 2nd annual conference on genetic and evolutionary computation, Morgan Kaufmann Publishers Inc, Burlington, pp 786–793Google Scholar
  22. Jin Y, Sendhoff B (2002) Fitness approximation in evolutionary computation-a survey. In: Proceedings of the 4th annual conference on genetic and evolutionary computation, Morgan Kaufmann Publishers Inc, Burlington, pp 1105–1112Google Scholar
  23. Kanchanomai C, Miyashita Y, Mutoh Y (2002a) Low cycle fatigue behavior and mechanisms of a eutectic sn–pb solder 63sn/37pb. Int J Fatig 24(6):671–683CrossRefGoogle Scholar
  24. Kanchanomai C, Miyashita Y, Mutoh Y (2002b) Low-cycle fatigue behavior of sn–ag, sn–ag–cu, and sn–ag–cu–bi lead-free solders. J Electron Mater 31(5):456–465CrossRefGoogle Scholar
  25. Kern S, Hansen N, Koumoutsakos P (2006) Local meta-models for optimization using evolution strategies. In: PPSN, Springer, New York, pp 939–948Google Scholar
  26. Kramer O (2014) A brief introduction to continuous evolutionary optimization. Springer, New YorkCrossRefzbMATHGoogle Scholar
  27. Krige DG (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J S Afr Inst Min Metall 52(6):119–139Google Scholar
  28. Lee W, Nguyen L, Selvaduray GS (2000) Solder joint fatigue models: review and applicability to chip scale packages. Microelectron Reliab 40(2):231–244CrossRefGoogle Scholar
  29. Makhloufi A, Aoues Y, El Hami A (2016) Reliability based design optimization of wire bonding in power microelectronic devices. Microsyst Technol 22(12):2737–2748CrossRefGoogle Scholar
  30. Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266CrossRefGoogle Scholar
  31. Nubli Zulkifli M, Jamal Azhar Zahid Z, Abdul Quadir G (2011) Temperature cycling analysis for ball grid array package using finite element analysis. Microelectron Int 28(1):17–28CrossRefGoogle Scholar
  32. Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning, vol 1. MIT Press, CambridgezbMATHGoogle Scholar
  33. Rencher AC (2003) Methods of multivariate analysis, vol 492. Wiley, AmsterdamzbMATHGoogle Scholar
  34. Runarsson TP (2004) Constrained evolutionary optimization by approximate ranking and surrogate models. In: International conference on parallel problem solving from nature, Springer, New York, pp 401–410Google Scholar
  35. Saadoune N, Radi B (2016) Probabilistic study of an embedded system. In: Information Science and Technology (CiSt), 2016 4th IEEE International Colloquium, IEEE, pp 756–761Google Scholar
  36. Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423MathSciNetCrossRefzbMATHGoogle Scholar
  37. Sudret B (2012) Meta-models for structural reliability and uncertainty quantification. arXiv:1203.2062
  38. Van Driel W, Hochstenbach H, Zhang G (2006) Design for reliability of wafer level packages. In: Thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems, 2006. EuroSime 2006, 7th international conference on, IEEE, pp 1–6Google Scholar
  39. Wang G, Cheng Z, Becker K, Wilde J (2001) Applying anand model to represent the viscoplastic deformation behavior of solder alloys. J Electron Packaging 123(3):247–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hamid Hamdani
    • 1
    • 2
    Email author
  • Bouchaïb Radi
    • 2
  • Abdelkhalak El Hami
    • 1
  1. 1.LMN, INSA RouenNormandie UnivRouenFrance
  2. 2.LIMIIFST SettatSettatMorocco

Personalised recommendations