Fabrication of large-area cylindrical microlens array based on electric-field-driven jet printing

  • Yujie Hu
  • Xiaoyang ZhuEmail author
  • Hongke Li
  • Lei Qian
  • Jianjun Yang
  • Hongbo Lan
Technical Paper


The cylindrical microlens array (CMLA) is an important micro-optical component, it has very significant application effects in the fields of naked eye three-dimensional display, laser line generation, and deformed beam shaping. However, the high efficiency and low-cost manufacturing of large-area CMLA is still challenging for industry and academia. Based on the electric-field-driven (EFD) jet printing technique, a new method for manufacturing a large-area CMLA with high efficiency and low cost has been proposed. We use the theoretical analysis and numerical simulation to investigate the basic principle of EFD jet printing. The influence of process parameters on the formation of CMLA was revealed by experiments. Using optimized process parameters, the fabrication of a CMLA with a patterned area of 50 × 50 mm2, a line width of 70 μm, and a period of 100 μm was achieved. The geometric and optical properties of the fabricated CMLA were characterized, showing that the products have the good geometric appearance and focusing effect. The results show that the proposed fabrication method provides a new manufacturing process for large-area manufacturing of CMLA with high efficiency and low cost.



This project is supported by National Natural Science Foundation of China (Grant no. 51705271, 51775288), Shandong Provincial Natural Science Foundation, China (no. ZR2017QEE018), and A Project of Shandong Province Higher Educational Science and Technology Program (J17KA032).


  1. Bi X, Li W (2015) Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. J Mater Chem C 3(22):5825–5834CrossRefGoogle Scholar
  2. Bian R, Xiong Y, Chen X et al (2015) Ultralong focal length microlens array fabricated based on SU-8 photoresist. Appl Opt 54(16):5088–5093CrossRefGoogle Scholar
  3. Chang CY, Yu CH (2015) A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J Micromech Microeng 25(2):025010MathSciNetCrossRefGoogle Scholar
  4. Choi HK, Ahsan MS, Yoo D et al (2015) Formation of cylindrical micro-lens array on fused silica glass surface using CO2, laser assisted reshaping technique. Opt Laser Technol 75:63–70CrossRefGoogle Scholar
  5. Cox WR, Chen T, Hayes DJ (2001) Micro-optics fabrication by ink-jet printers. Opt Photonics News 12(6):32–35CrossRefGoogle Scholar
  6. Jacot-Descombes L, Cadarso VJ, Schleunitz A et al (2015) Organic–inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties. Opt Express 23(19):25365–25376CrossRefGoogle Scholar
  7. Kim JY, Pfeiffer K, Voigt A et al (2012) Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem 22(7):3053–3058CrossRefGoogle Scholar
  8. Kim HS, Kim CK, Jang HW (2013) Fabrication of a microball lens array for OLEDs fabricated using a monolayer microsphere template. Electron Mater Lett 9(1):39–42Google Scholar
  9. Li X, Ding Y, Shao J et al (2011) Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Opt Lett 36(20):4083CrossRefGoogle Scholar
  10. Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):OP165–OP169Google Scholar
  11. Li X, Tian H, Ding Y et al (2013) Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature. Appl Mater Interfaces 5(20):9975–9982CrossRefGoogle Scholar
  12. Lim Jiseok, Gruner Philipp, Konrad Manfred et al (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13(8):1472–1475CrossRefGoogle Scholar
  13. Lu DX, Zhang YL, Han DD et al (2015) Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J Mater Chem C 3(8):1751–1756CrossRefGoogle Scholar
  14. Luo Y, Wang L, Ding Y et al (2013) Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface. Appl Surf Sci 279:36–40CrossRefGoogle Scholar
  15. Luo Z, Wang C, Yin K et al (2016) Rapid fabrication of cylindrical microlens array by shaped femtosecond laser direct writing. Appl Phys A 122(7):633CrossRefGoogle Scholar
  16. Luo Z, Duan J, Guo C (2017) Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42(12):2358CrossRefGoogle Scholar
  17. MacFarlane DL, Narayan V, Tatum JA et al (1994) Microjet fabrication of microlens arrays. IEEE Photonics Technol Lett 6:1112–1114CrossRefGoogle Scholar
  18. Meng X, Chen F, Yang Q et al (2015) Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching. Appl Phys A 121(1):157–162CrossRefGoogle Scholar
  19. Orth A, Crozier KB (2017) High throughput multichannel fluorescence microscopy with microlens arrays. Opt Express 22(15):18101CrossRefGoogle Scholar
  20. Park JU, Hardy M, Kang SJ et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782CrossRefGoogle Scholar
  21. Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284CrossRefGoogle Scholar
  22. Qian L, Lan H et al (2018) Electric-field-driven jet deposition 3D printing. Sci Sin Technol 48(07):77–86CrossRefGoogle Scholar
  23. Shan XC, Liu T, Mohaime M et al (2015) Large format cylindrical lens films formed by roll-to-roll ultraviolet embossing and applications as diffusion films. J Micromech Microeng 25(3):035029CrossRefGoogle Scholar
  24. Shen SC, Huang JC (2009) Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications. Opt Express 17(15):13122–13127CrossRefGoogle Scholar
  25. Song YM, Xie Y, Malyarchuk V et al (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99CrossRefGoogle Scholar
  26. Sutanto E, Tan Y, Onses MS et al (2015) Electrohydrodynamic jet printing of micro-optical devices. Manuf Lett 2(1):4–7CrossRefGoogle Scholar
  27. Wu D, Chen QD, Niu LG et al (2009) 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. Photonics Technol Lett IEEE 21(20):1535–1537CrossRefGoogle Scholar
  28. Xie D, Zhang H, Shu X et al (2012) Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt Express 20(14):15186–15195CrossRefGoogle Scholar
  29. Xie D, Chang X, Shu X et al (2015) Rapid fabrication of thermoplastic polymer refractivemicrolens array using contactless hot embossing technology. Opt Express 23(4):5154–5166CrossRefGoogle Scholar
  30. Xin L, Man Z, Li-Fang S et al (2017) Fabrication method for the microlens array of high F-number. Acta Photonica Sin 46(2):222004CrossRefGoogle Scholar
  31. Xing J, Rong W, Sun D et al (2016) Extrusion printing for fabrication of spherical and cylindrical microlens arrays. Appl Opt 55(25):6947CrossRefGoogle Scholar
  32. Ye H, Cao Z, Li M (2018) Rapid fabrication of semiellipsoid microlenses using 3D-printing and roll-to-roll imprinting process. Microsyst Technol 24(8):3437–3441CrossRefGoogle Scholar
  33. Yong J, Chen F, Yang Q et al (2013) Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl Mater Interfaces 5(19):9382–9385CrossRefGoogle Scholar
  34. Yu-Yan P, Xiong-Tu Z, Yong-Ai Z et al (2016) Design and simulation of curved microlens array for integral imaging 3D display. Acta Photonica Sin 45(3):322002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yujie Hu
    • 1
    • 2
  • Xiaoyang Zhu
    • 1
    • 2
    Email author
  • Hongke Li
    • 1
    • 2
  • Lei Qian
    • 1
    • 2
  • Jianjun Yang
    • 1
    • 2
  • Hongbo Lan
    • 1
    • 2
  1. 1.Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoChina
  2. 2.School of Mechanical and Automotive EngineeringQingdao University of TechnologyQingdaoChina

Personalised recommendations