Advertisement

Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure

  • Nidhi Gupta
  • Akhilesh Pandey
  • Siva Rama Krishna Vanjari
  • Shankar DuttaEmail author
Technical Paper
  • 6 Downloads

Abstract

The presence of residual stress is inevitable and major constraint for MEMS devices as they induce deformation, fracture, fatigue and micro structural changes in the structure. This paper presents the influence of residual stresses (up to − 2100 MPa) on the performance of AlN based piezoelectric MEMS accelerometer structure. The MEMS structure consists of an AlN coated silicon proof mass (800 µm × 800 µm × 300 µm) suspended by four beams (400 µm × 200 µm × 10 µm). Under the influence of residual stress (− 2100 MPa), the first three modal frequencies (13.54 kHz, 20.95 kHz and 20.95 kHz) of the accelerometer structure are reduced to 5.19 kHz, 10.17 kHz and 10.17 kHz respectively. The location of proof mass deflection and maximum von-Mises stress also get altered. Hence the structure sensitivity is also modified from 3.64 × 10−2/g (at no residual stress) to 2.54 × 10−4/g (at − 2100 MPa). The damping factor of the structure also gets modified from 3.96 to 10.38 due to the residual stress. Thus, the accelerometer frequency response (3 dB bandwidth) is found to be diminished from 1.81 to 0.26 kHz due to the presence of residual stress.

Notes

Acknowledgements

Authors would like to thank Director SSPL for his kind permission to publish this paper. Help from other colleagues are also acknowledged.

References

  1. Antonova K, Duta L, Szekeres A, Stan GE, Mihailescu IN, Gartner M (2017) Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition. Appl Surf Sci 394:197CrossRefGoogle Scholar
  2. Caliendo C, Imperatori P, Cianc E (2003) Structural, morphological and acoustic properties of AlN thick films sputtered on Si (001) and Si (111) substrates at low temperature. Thin Solid Films 441:32CrossRefGoogle Scholar
  3. Chao MY, Ali A, Ghosh S, Lee JEY (2017) An aluminum nitride on silicon resonant MEMS accelerometer operating in ambient pressure. IEEE Transducers, p 607Google Scholar
  4. Chenga H, Sun Y, Zhang JX, Zhang YB, Hing SP (2003) AlN films deposited under various nitrogen concentrations by RF reactive sputtering. J Crystal Growth 254:46CrossRefGoogle Scholar
  5. Drusedau TP, Blasing J (2000) Optical and structural properties of highly c-axis oriented aluminum nitride prepared by sputter-deposition in pure nitrogen. Thin Solid Films 377:27CrossRefGoogle Scholar
  6. Dutta S, Shaveta Imran Md, Pal R, Bhan RK (2014) Diffusion induced residual stress in comb-type micro-accelerometer structure. J Mater Sci: Mater Electron 25(9):3828Google Scholar
  7. Dutta S, Panchal A, Kumar M, Pal R, Bhan RK (2016) Effect of residual stress on modal patterns of MEMS vibratory gyroscope. AIP Conf Proc 1724:020103CrossRefGoogle Scholar
  8. Gerfers F, Kohlstadt M, Bar H, He MY, Manoli Y, Wang LP (2007) Sub-μg ultra low noise MEMS accelerometers based on CMOS-compatible piezoelectric AlN thin films. IEEE Conf Solid-State Sens Act Microsyst 1191Google Scholar
  9. Gerfers F, Kohlstad PM, Ginsburg E, He MY, Rubio DS, Manoli Y, Wang L Pemg (2010) Sputtered AlN thin film for piezoelectric MEMS devices—FBAR resonators and accelerometer. Solid State Circuits Technologies, JW Swart Eds, INTECH, CroatiaGoogle Scholar
  10. Gesing AL, Alves FDP, Paul S, Cordioli JA (2018) On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci Rep 8(3920):1Google Scholar
  11. Hindrichsen CC, Almind NS, Brodersen SH, Hansen O, Thomsen EV (2009) Analytical model of a PZT thick-film triaxial accelerometer for optimum design. IEEE Sens 9(4):419CrossRefGoogle Scholar
  12. Iborra E, Olivares J, Clement M, Vergara L, Hervas AS, Sangrador J (2004a) a) Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens Act A 115:501CrossRefGoogle Scholar
  13. Iborra E, Clement M, Sangrador J, Hervas AS, Vergara L, Aguilar M (2004b) b) Effect of particle bombardment on the orientation and the residual stress of sputtered AlN films for SAW devices. IEEE Trans Ultrason Ferroelectr Freq Conf 51:352CrossRefGoogle Scholar
  14. Khana S, Shahid M, Mahmoodd A, Shahd A, Ahmede I, Mehmood M, Azizd U, Razad Q, Alamc M (2015) Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering. Prog Nat Sci Mater Int 25:282CrossRefGoogle Scholar
  15. Kobayashi T, Okada H, Akiyama M, Maeda R, and Itoh T (2009) A Digital output piezoeletric accelerometer using CMOS-compatible AlN thin film. IEEE Transducers 1166Google Scholar
  16. Kung P, Saxler A, Zhang X, Walker D, Wang TC, Ferguson I, Razeghi M (1995) High quality AIN and GaN epilayers grown on (0001) sapphire, (100), and (111) silicon substrates. Appl Phys Lett 66:2958CrossRefGoogle Scholar
  17. Loebl HP, Klee M, Wunnicke O, Kiewitt R, Dekker R, Pelt EV (1999) Piezoelectric AlN and PZT films for micro-electronic applications. In: IEEE Ultrasonics Symposium, p 1031Google Scholar
  18. Mertin S, Heinz B, Rattunde O, Christmann G, Dubois MA, Nicolay S, Muralt P (2018) Piezoelectric and structural properties of c-axis textured aluminium scandium nitride thin films up to high scandium content. Surf Coat Tech 343:2CrossRefGoogle Scholar
  19. Nemirovsky Y, Nemirovsky Muralt AP, Setter N (1996) Design of a novel thin film piezoelectric accelerometer. Sens Act A 56:239CrossRefGoogle Scholar
  20. Olsson RH, Wojciechowski KE, Baker MS, Tuck MR, Fleming JG (2009) Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. IEEE MEMS 18(3):671CrossRefGoogle Scholar
  21. Pandey A, Dutta S, Prakash R, Dalal S, Raman R, Kapoor AK, Kaur D (2016) Growth and evolution of residual stress of AlN films on silicon (100) wafer. Mater Sci Semicond Proc 52:16CrossRefGoogle Scholar
  22. Pandey A, Dutta S, Prakash R, Dalal S, Raman R, Kapoor AK, Kaur D (2017) Growth and comparison of residual stress of AlN films on silicon (100), (110) and (111) substrates. J Electron Mater 47(2):1405CrossRefGoogle Scholar
  23. Pawar S, Singh K, Sharma S, Pandey A, Dutta S, Kaur D (2018) Growth assessment and scrutinize dielectric reliability of c-axis oriented insulating AlN thin films in MIM structures for microelectronics applications. Mater Chem Phys 219:74CrossRefGoogle Scholar
  24. Pobedinskas P, Bolsee JC, Dexters W, Ruttens B, Mortet V, Dhaen J, Manca JV, Haenen K (2012) Thickness dependent residual stress in sputtered AlN thin films. Thin Solid Films 522:180CrossRefGoogle Scholar
  25. Tittmann BR, Parks DA, Zhang SO (2013) High temperature piezoelectrics—a comparison. In: 13th Int Symp Nondestructive Charac Mat (NDCM-XIII)Google Scholar
  26. Tran AT, Wunnicke O, Pandraud G, Nguyen MD, Schellevis H, Sarro PM (2013) Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Sens Act A 202:118CrossRefGoogle Scholar
  27. Ur SC, Kim ES, Yi SH (2013) The Effects of residual stresses in the composite diaphragm on the performance of piezoelectric microspeakers. Electron Mater Lett 9:119CrossRefGoogle Scholar
  28. Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Mckinstry ST (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. IEEE MEMS 12(4):433CrossRefGoogle Scholar
  29. Wang LP, Ginsburg E, Gerfers F, Rubio DS, Weinfeld B, Ma Q, Rao V, and He MY (2006) Sputtered AIN thin films for piezoelectric MEMS devices. IEEE Sens 10Google Scholar
  30. Yang M, Wang W, Lin Y, Yang W, Li G (2016) Epitaxial growth of high quality AlN films on Si substrates. Mat Lett 182:277CrossRefGoogle Scholar
  31. Yazdi N, Ayazi F, Najaf K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640CrossRefGoogle Scholar
  32. Yu JC, Lan CB (2001) System modeling of microaccelerometer using piezoelectric thin films. Sens Act A 88:178CrossRefGoogle Scholar
  33. Yu HG, Zou L, Deng K, Wolf R, Tadigadapa S, McKinstry ST (2003) Lead zirconate titanate MEMS accelerometer using interdigitated electrodes. Sens Act A 107:26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nidhi Gupta
    • 1
    • 2
  • Akhilesh Pandey
    • 1
  • Siva Rama Krishna Vanjari
    • 2
  • Shankar Dutta
    • 1
    Email author
  1. 1.Solid State Physics Laboratory, DRDOTimarpurIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology HyderabadHyderabadIndia

Personalised recommendations