Advertisement

A novel numerical modeling paradigm for bio particle tracing in non-inertial microfluidics devices

  • Amirali Ebadi
  • Reihaneh Toutouni
  • Mohammad Javad Farshchi Heydari
  • Morteza FathipourEmail author
  • Madjid Soltani
Technical Paper
  • 50 Downloads

Abstract

In this work, we report on the design and implementation of a new method for the two dimensional (2D) simulation of rigid spherical particles trajectory which are to be separated in a microfluidics device based on their sizes. The advantages of efficient particle trajectory simulation method (EPTSM) include drastically smaller runtimes as compared with other methods as well as the ability to include particle collisions with channel’s walls and its ability to be extended to 3D simulations. Numerically simulated results were verified using a specifically designed and fabricated deterministic lateral displacement microfluidic device test structure. The method has provided realistic results for the study of multi-particles throughout the entire channel.

Notes

References

  1. Al-Fandi M et al (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput Integr Manuf 27(2):237–244CrossRefGoogle Scholar
  2. Balvin M et al (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103(7):078301CrossRefGoogle Scholar
  3. Beech J (2005) Deterministic lateral displacement devices. MSc, Lund UniversityGoogle Scholar
  4. Beech J (2011) Microfluidics separation and analysis of biological particles. Fasta Tillståndets FysikGoogle Scholar
  5. Beech JP, Jönsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18):2698–2706CrossRefGoogle Scholar
  6. Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427CrossRefGoogle Scholar
  7. Chen Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645CrossRefGoogle Scholar
  8. Choi S et al (2014) High-throughput DNA separation in nanofilter arrays. Electrophoresis 35(15):2068–2077CrossRefGoogle Scholar
  9. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784CrossRefGoogle Scholar
  10. Duffy DC et al (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRefGoogle Scholar
  11. Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182CrossRefGoogle Scholar
  12. Huang LR et al (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRefGoogle Scholar
  13. Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34(7):1028–1041CrossRefGoogle Scholar
  14. Inglis D (2007) Microfluidic devices for cell separation. Princeton University, PrincetonGoogle Scholar
  15. Inglis DW (2009) Efficient microfluidic particle separation arrays. Appl Phys Lett 94(1):013510MathSciNetCrossRefGoogle Scholar
  16. Inglis DW et al (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5):655–658CrossRefGoogle Scholar
  17. Inglis DW et al (2008) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8(6):925–931CrossRefGoogle Scholar
  18. Jin C et al (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44MathSciNetCrossRefGoogle Scholar
  19. Khodaee F et al (2016) Numerical simulation of separation of circulating tumor cells from blood stream in deterministic lateral displacement (dld) microfluidic channel. J Mech 32(4):463–471CrossRefGoogle Scholar
  20. Krishnan JN et al (2009) Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30(9):1457–1463CrossRefGoogle Scholar
  21. Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8(5):054114CrossRefGoogle Scholar
  22. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158CrossRefGoogle Scholar
  23. Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E 83(5):056301CrossRefGoogle Scholar
  24. Smith JP et al (2012) Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21):3133–3142CrossRefGoogle Scholar
  25. Takagi J et al (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784CrossRefGoogle Scholar
  26. Vig AL (2010) Pinched flow fractionation—technology and application. Ph.D. thesis, Department of Micro-and Nanotechnology Technical University of DenmarkGoogle Scholar
  27. Yan S et al (2015) A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis 36(2):284–291CrossRefGoogle Scholar
  28. Zheng S et al (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: Micro electro mechanical systems, 2005. MEMS 2005. 18th IEEE international conference on, IEEEGoogle Scholar
  29. Zhu J, Tzeng TRJ, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31(8):1382–1388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amirali Ebadi
    • 1
  • Reihaneh Toutouni
    • 2
    • 3
  • Mohammad Javad Farshchi Heydari
    • 5
  • Morteza Fathipour
    • 1
    • 2
    Email author
  • Madjid Soltani
    • 4
    • 5
  1. 1.MEMS and NEMS Laboratory, Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  2. 2.Device Simulation and Modeling Laboratory, Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  3. 3.Department of Petroleum EngineeringUniversity of WyomingLaramieUSA
  4. 4.Centre for Biotechnology and Bioengineering (CBB)University of WaterlooWaterlooCanada
  5. 5.Department of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations