Resonant magnetic sensor using concentration of magnetic field gradient by asymmetric permalloy plates

  • Naoki InomataEmail author
  • Wataru Suwa
  • Nguyen Van Toan
  • Masaya Toda
  • Takahito Ono
Technical Paper


This paper demonstrates a novel resonant magnetic sensor that utilizes a concentrator to obtain a large magnetic-field gradient. A silicon-cantilevered resonator, with a 10-µm-diameter magnetic particle on the tip, is placed between two asymmetric permalloy plates, which function as the concentrator; one of the plates has a narrow tip, whereas the other has a wide one. This asymmetric-plate pair generates a large magnetic gradient, which generates considerable force on the magnetic particle. The resonant-frequency varies, depending on the force applied on the particle. The extremal magnetic field can be determined by monitoring the changes in the resonant frequency. The magnetic gradient generated by the concentrator is theoretically calculated using the finite element method, obtaining a gradient of 5.4 × 104 T/m for a magnetic field of 1 T. A resonant magnetic sensor is fabricated using conventional microfabrication techniques, and the magnetic force-dependent resonant-frequency change is observed. The experimental magnetic sensitivity is estimated to be 5.1 × 10−7 T, considering the minimum noise level (3.29 ppm).



Part of this research was performed at the Micro/Nanomachining Research Education Center and the Nishizawa Center of Tohoku University.


  1. Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 34(6):647–654CrossRefGoogle Scholar
  2. Bahreyni B, Shafai C (2007) A resonant micromachined magnetic field sensor. IEEE Sens J 7(9):1326–1334CrossRefGoogle Scholar
  3. Baschirotto A, Borghetti F, Dallago E, Malcovati P, Marchesi M, Melissano E, Siciliano P, Venchi G (2006) Fluxgate magnetic sensor and front-end circuitry in an integrated microsystem. Sens Actuators A 132:90–97CrossRefGoogle Scholar
  4. Baschirotto A, Dallago E, Ferri M, Malcovati P, Rossini A, Venchi G (2010) 2D micro-fluxgate earth magnetic field measurement systems with fully automated acquisition setup. Measurement 43(1):46–53CrossRefGoogle Scholar
  5. Baule G, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 66:95–96CrossRefGoogle Scholar
  6. Beroulle V, Bertrand Y, Latorre L, Nouet P (2003) Monolithic piezoresistive CMOS magnetic field sensors. Sens Actuators A 103(1–2):23–32CrossRefGoogle Scholar
  7. Clarke J, Braginski AI (2006) The SQUID handbook: applications of SQUIDs and SQUID systems, 1st edn. Wiley-Vch, Weinheim, pp 269–389CrossRefGoogle Scholar
  8. Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666CrossRefGoogle Scholar
  9. Diaz-Michelena M (2009) Small magnetic sensors for space applications. Sensors 9(4):2271–2288CrossRefGoogle Scholar
  10. Emmerich H, Schöfthaler M (2000) Magnetic field measurements with a novel surface micromachined magnetic-field sensor. IEEE Trans Electron Devices 47(5):972–977CrossRefGoogle Scholar
  11. Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M, Nakasato N, Ando Y (2018) Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors. Appl Phys Express 11(2):023001CrossRefGoogle Scholar
  12. Gabrielson TB (1993) Mechanical–thermal noise in micromachined acoustic and vibration sensors. IEEE Trans Electron Devices 40(5):903–909CrossRefGoogle Scholar
  13. Herrera-May L, García-Ramírez PJ, Aguilera-Cortés LA, Martínez-Castillo J, Sauceda-Carvajal A, García-González L, Figueras-Costa EA (2009a) Resonant magnetic field microsensor with high quality factor at atmospheric pressure. J Micromech Microeng 19(1):015016CrossRefGoogle Scholar
  14. Herrera-May AL, Aguilera-Cortés LA, García-González L, Figueras-Costa E (2009b) Mechanical behavior of a novel resonant microstructure for magnetic applications considering the squeeze-film damping. Microsyst Technol 15(2):259–268CrossRefGoogle Scholar
  15. Herrera-May AL, Aguilera-Cortés LA, García-Ramírez PJ, Manjarrez E (2009c) Resonant magnetic field sensors based on MEMS technology. Sensors 9(10):7785–7813CrossRefGoogle Scholar
  16. Hui Y, Nan TX, Sun NX, Rinaldi M (2003) MEMS resonant magnetic field sensor based on an ALN/FeGaB bilayer nano-plate resonator. In: Proc. of 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS), pp 721–724, 2003Google Scholar
  17. Kádár Z, Bossche A, Sarro PM, Mollinger JR (1998) Magnetic-field measurements using an integrated resonant magnetic-field sensor. Sens Actuators A 70(3):225–232CrossRefGoogle Scholar
  18. Kanno T, Mohri K, Yagi T, Uchiyama T, Shen LP (1997) Amorphous wire MI micro sensor using C-MOS IC multi-vibrator. IEEE Trans Magn 33(5):3353–3355CrossRefGoogle Scholar
  19. Kariniemi V, Ahopelto J, Karp PJ, Katila TE (1974) The fetal magnetocardiogram. J Perinat Med 2(3):214–216CrossRefGoogle Scholar
  20. Karo H, Sasada C (2015) Magnetocardiogram measured by fundamental mode orthogonal fluxgate array. J Appl Phys 117:17B322CrossRefGoogle Scholar
  21. Keplinger F, Kvasnica S, Jachimowicz A, Kohl F, Steurer J, Hauser H (2004) Lorentz force based magnetic field sensor with optical readout. Sens Actuators A 110(1–3):112–118CrossRefGoogle Scholar
  22. Kim HJ, Wang S, Xu C, Laughlin D, Zhu J, Piazza G (2017) Piezoelectric/magnetostrictive MEMS resonant sensor array for in-plane multi-axis magnetic field detection. In: Proc. of 2017 IEEE 30th international conference on micro electro mechanical systems (MEMS), pp 109–112, 2017Google Scholar
  23. Kleiner R, Koelle D, Ludwig F, Clarke J (2004) Superconducting quantum interference devices: state of the art and application. Proc IEEE 92(10):1534–1548CrossRefGoogle Scholar
  24. Kotani M, Chiyotani K (1985) A new system for measurement of weak magnetic fields emanating from the body: development and clinical applications. Int J Precis Mach 1(1):57–94Google Scholar
  25. Lei J, Lei C, Zhou Y (2012) Fabrication and characterization of a new MEMS fluxgate sensor with nanocrystalline magnetic core. Measurement 45(3):535–540CrossRefGoogle Scholar
  26. Leixiang B, Yumei W, Ping L, Yifan W, Xibei Z, Ming L (2016) Magnetostrictive stress induced frequency shift in resonator for magnetic field sensor. Sens Actuators A 247:453–458CrossRefGoogle Scholar
  27. Lenz J, Edelstein AS (2006) Magnetic sensors and their applications. IEEE Sens J 6(3):631–649CrossRefGoogle Scholar
  28. Mohri K, Honkura Y (2007) Amorphous wire and CMOS IC based magneto-impedance sensors—origin, topics, and future. Sens Lett 5(1):267–270CrossRefGoogle Scholar
  29. Mohri K, Uchiyama T, Shen LP, Cai CM, Panina LV, Honkura Y, Yamamoto M (2002) Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects. IEEE Trans Magn 38(5):3063–3068CrossRefGoogle Scholar
  30. Newhouse V (1975) Applied superconductivity, 1st edn. Academic Press, Cambridge, pp 1–112Google Scholar
  31. Perez L, Aroca C, Sánchez P, López E, Sánchez MC (2004) Planar fluxgate sensor with an electrodeposited amorphous core. Sens Actuators A 109(3):208–211CrossRefGoogle Scholar
  32. Popovic RS (2004) Hall magnetic sensors. Hall effect devices, 2nd edn. CRC Press, Boca Raton, pp 236–323CrossRefGoogle Scholar
  33. Ripka P, Tipek A (2007) Magnetic sensors. Modern sensors handbook, 1st edn. ISTE Ltd, Wiltshire, pp 433–475Google Scholar
  34. Sandhu A, Sanbonsugi H, Shibasaki I, Abe M, Handa H (2004) High sensitivity InSb ultra-thin film micro-hall sensors for bioscreening applications. Jpn J Appl Phys 43(7A):L868–L870CrossRefGoogle Scholar
  35. Schwartz B (1977) Superconductor application: SQUIDs and machines. Springer, Boston, pp 355–402CrossRefGoogle Scholar
  36. Seo YJ, Toda M, Ono T (2015) Si nanowire probe with Nd–Fe–B magnet for attonewton-scale force detection. J Micromech Microeng 25(4):045015CrossRefGoogle Scholar
  37. Sunier R, Vancura T, Li Y, Kay-Uwe K, Baltes H, Brand O (2006) Resonant magnetic field sensor with frequency output. J Microelectromech Syst 15(5):1098–1107CrossRefGoogle Scholar
  38. Tamayo J, Calleja M, Ramos D, Mertens J (2007) Underlying mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid. Phys Rev B 76(18):180201CrossRefGoogle Scholar
  39. Uchiyama T, Nakayama S, Mohri K, Bushida K (2009) Biomagnetic field detection using very high sensitivity magnetoimpedance sensors for medical applications. Phys Status Solidi (a) 206(4):639–643CrossRefGoogle Scholar
  40. Wickenden DK, Champion JL, Osiander R, Givens RB, Lamb JL, Miragliotta JA, Oursler DA, Kistenmacher TJ (2003) Micromachined polysilicon resonating xylophone bar magnetometer. Acta Astronaut 52(2–6):421–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations