Advertisement

Free standing copper incorporated carbon nanofibers based flexible anodes for high performance sodium ion batteries

  • Indu Pandey
  • Jai Deo Tiwari
  • Praveen K. Sekhar
Technical Paper
  • 1 Downloads

Abstract

In the era of sustainable and clean transportation, electric vehicles are the key to usher. Among carbonaceous materials, carbon nanofibers are inexpensive catalyst that have proven to be high capacity anode material for batteries. In this work, we propose a flexible anode with high electrochemical performance for sodium ion batteries. In this article, we report a porous flexible anode based on copper doped carbon nanofibers grown on activated carbon cloth for sodium ion batteries by chemical vapor deposition methods. It exhibits outstanding high reversible capacity of 462.4 mAg−1 at 100 mAg−1 current density even after 700 cycles. This outstanding performance is due to copper incorporated in the carbon nanofibers framework which enhances the reversible intercalation/de-intercalation of sodium ions during charging–discharging cycles.

Notes

References

  1. Alcántara R, Jimnez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3(11):639–642CrossRefGoogle Scholar
  2. Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8(4):A222–A225CrossRefGoogle Scholar
  3. Bao Y, Huang Y, Song X, Long J, Wang S, Ding L-X, Wang H (2018) Heteroatom doping and activation of carbon nanofibers enabling ultrafast and stable sodium storage. Electrochim Acta 276:304–310CrossRefGoogle Scholar
  4. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  5. Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101CrossRefGoogle Scholar
  6. Chen L-F, Huang Z, Liang H, Gao H, Yu SH (2014) Three-dimension heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5511CrossRefGoogle Scholar
  7. Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRefGoogle Scholar
  8. Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRefGoogle Scholar
  9. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ion 28:1172–1175CrossRefGoogle Scholar
  10. Ge Y, Jiang H, Fu K, Zhang C, Zhu J, Chen C, Lu Y, Qiu Y, Zhang X (2014) Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J Power Sources 272:860–865CrossRefGoogle Scholar
  11. Hao R, Yang Y, Wang H, Jia B, Ma G, Yua D, Guo L, Yang S (2018a) Direct chitin conversion to N-doped amorphous carbon nanofibers for high performing full sodium-ion batteries. Nanoenergy 46:220–228Google Scholar
  12. Hao R, Yang Y, Wang H, Ji B, Ma G, Yu D, Guo L, Yang S (2018b) Direct chitin conversion to N-doped amorphous carbon nanofibers for high performing full sodium-ion batteries. Nano Energy 45:220–228CrossRefGoogle Scholar
  13. Jin J, Shi Z, Wang C-Y (2014) Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta 141:302–310CrossRefGoogle Scholar
  14. Kim SW, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  15. Kim H, Hong J, Yoon G, Kim H, Park K-Y, Park M-S, Yoon W-S, Kang K (2015) Sodium intercalation chemistry in graphite. Energy Environ Sci 8:296–2969Google Scholar
  16. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na+-insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na+-ion batteries. Adv Funct Mater 21:3859–3867CrossRefGoogle Scholar
  17. Li W, Li M, Adair KR, Sun X, Yu Y (2017) Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A 5:13882–13906CrossRefGoogle Scholar
  18. Liang JJ, Wei Z, Wang C, Ma J (2018) Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@ MoS2 nanosheet arrays. Electrochim Acta.  https://doi.org/10.1016/j.electacta.2018.07.230 CrossRefGoogle Scholar
  19. Ling C, Mizuno F (2014) Boron-doped graphene as a promising anode for Na ion batteries. PCCP 16:10419–10424CrossRefGoogle Scholar
  20. Liu H, Liu Y (2018) 1D mesoporous NaTi2(PO)4/carbon nanofiber: the promising anode material for sodium ion batteries. Ceram Int 44:5813–5816CrossRefGoogle Scholar
  21. Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wan C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRefGoogle Scholar
  22. Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji X (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem 1:10662–10666CrossRefGoogle Scholar
  23. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRefGoogle Scholar
  24. Pandey I, Tiwari JD, Sekhar PK (2018) Metal incorporated polymeric nanodots based electrode material for fluorescent supercapacitors. J Electrochem Soc 165(8):B3035–B3042CrossRefGoogle Scholar
  25. Park S-H, Lee WJ (2017) Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci Rep 5:09754.  https://doi.org/10.1038/srep09754 CrossRefGoogle Scholar
  26. Qian J, Chen Y, Wu L, Cao Y, Aia X, Yang H (2012) High capacity Na storage and superior cyclability of nanocomposite Sb/C anode for Na ion batteries. Chem Commun 48:7070–7072CrossRefGoogle Scholar
  27. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRefGoogle Scholar
  28. Su D, Ahn HJ, Wang G (2013) SnO2@ graphene nanocomposites as anode materials for Na+-ion batteries with superior electrochemical performance. Chem Commun 49(30):3131–3133CrossRefGoogle Scholar
  29. Su D, Dou S, Wang G (2014) WS2@ graphene nanocomposites as anode materials for Na ion batteries with enhanced electrochemical performances. Chem Commun 50:4192–4295CrossRefGoogle Scholar
  30. Tang K, Fu L, White RJ, Yu L (2012a) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2(7):873–877CrossRefGoogle Scholar
  31. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012b) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  32. Wang X, Hao H, Liu J, Huang T, Yu A (2011) A novel method for preparation of macroporous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069CrossRefGoogle Scholar
  33. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013a) Nitrogen doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6(1):56–60CrossRefGoogle Scholar
  34. Wang ZH, Qie L, Yuan X, Zhang WX, Lu XL, Huang YH (2013b) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRefGoogle Scholar
  35. Wang Y, Chou SL, Liu H, Dou SX (2013c) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRefGoogle Scholar
  36. Wang Y, Xiao N, Wang Z, Tang YC, Li H, Yu M, Liu C, Zhou Y, Qiu J (2018) Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 135:187–194CrossRefGoogle Scholar
  37. Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4(9):3342–3345CrossRefGoogle Scholar
  38. Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2015) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na ion batteries. Nano Energy 19:279–288CrossRefGoogle Scholar
  39. Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou SX, Dai LM (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRefGoogle Scholar
  40. Yan Y, Yin Y, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater 4:1301584–1301588CrossRefGoogle Scholar
  41. Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan CL (2015) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28:539–545CrossRefGoogle Scholar
  42. Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2016) S-Doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29:1604108–1604112CrossRefGoogle Scholar
  43. Yang L, Ran L, Yi M (2018) Carbon fiber knitted fabric reinforced copper composite for sliding contact material. Mater Des 32:2365–2369CrossRefGoogle Scholar
  44. Yue Y, Binder A, Guo B, Zhang Z, Qiao Z, Tian C, Dai S (2014) Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed 53:3134–3137CrossRefGoogle Scholar
  45. Zhang K, Hu Z, Liu X, Tao Z, Chen J (2015) FeSe2 microspheres as a high performance anode material for Na ion batteries. Adv Mater 27:3305–3309CrossRefGoogle Scholar
  46. Zhang S, Zhao H, Wang M, Li Z, Mi J (2018) Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries. Electrochim Acta 279:186–194CrossRefGoogle Scholar
  47. Zhao P-Y, Zhang J, Li Q, Wang C-Y (2016) Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries. J Power Sources 334:170–178CrossRefGoogle Scholar
  48. Zheng P, Liu T, Guo S (2016) Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Sci Rep.  https://doi.org/10.1038/srep35620 CrossRefGoogle Scholar
  49. Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C (2013) Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7(7):6378–6386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Indu Pandey
    • 1
  • Jai Deo Tiwari
    • 2
  • Praveen K. Sekhar
    • 3
  1. 1.Department of ChemistryMVJ College of EngineeringBangaloreIndia
  2. 2.AUTOSAR and In-Vehicle Networking Group, KPIT Technologies LimitedBangaloreIndia
  3. 3.Nanomaterials and Sensors Laboratory, School of Engineering and Computer Science (ENCS)Washington State University Vancouver (WSU Vancouver)VancouverUSA

Personalised recommendations