Traveling wave excitation sources for FEM analysis of scattering in acoustic waveguide

  • Xinyi LiEmail author
  • Jingfu Bao
  • Yulin Huang
  • Benfeng Zhang
  • Tatsuya Omori
  • Ken-ya Hashimoto
Technical Paper


This paper proposes use of traveling wave type excitation sources for the scattering analysis of acoustic waveguides using the finite element method (FEM). This technique allows to generate only one particular mode selectively. Scattering behavior at arbitrary boundaries can be evaluated accurately and quickly in frequency domain. After describing and demonstrating its operation mechanism in detail, this technique is applied to two cases. First, wave scattering properties are discussed at the end of a two-dimensional closed waveguide. Then the technique is applied to a three-dimensional open waveguide including periodic gratings. The results reveal effectiveness of this technique.



X. Li acknowledges the support of the Japanese Government (MEXT) for the scholarship through the Super Global University Project.


  1. Alleyne D, Cawley P (1991) A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J Acoust Soc Am 89(3):1159. CrossRefGoogle Scholar
  2. Anastassiu HT (2003) A review of electromagnetic scattering analysis for inlets, cavities, and open ducts. IEEE Antennas Propag Mag 45(6):27. CrossRefGoogle Scholar
  3. Auld BA (1973) Acoustic fields and waves in solids. Ripol Classic, MoscowGoogle Scholar
  4. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185. MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bowman JJ, Senior TB, Uslenghi PL (1970) Electromagnetic and acoustic scattering by simple shapes. Tech. repGoogle Scholar
  6. Chia TT, Burkholder RJ, Lee R (1995) The application of FDTD in hybrid methods for cavity scattering analysis. IEEE Trans Antennas Propag 43(10):1082. CrossRefGoogle Scholar
  7. Collino F, Monk PB (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164(1–2):157. MathSciNetCrossRefzbMATHGoogle Scholar
  8. Colton D, Kress R (2012) Inverse acoustic and electromagnetic scattering theory, vol 93. Springer, BerlinzbMATHGoogle Scholar
  9. Cullerne J (2000) The Penguin dictionary of physics. The Penguin dictionary of physics (Penguin Books)Google Scholar
  10. Harley JB, Moura JM (2013) Sparse recovery of the multimodal and dispersive characteristics of Lamb waves. J Acoust Soc Am 133(5):2732. CrossRefGoogle Scholar
  11. Hashimoto KY (2000) Surface acoustic wave devices in telecommunications. Springer, BerlinCrossRefGoogle Scholar
  12. Hashimoto KY (2009) RF bulk acoustic wave filters for communications. Artech House, NorwoodGoogle Scholar
  13. Hashimoto KY (2013) Surface acoustic wave devices in telecommunications: modeling and simulation. Springer, BerlinGoogle Scholar
  14. Hofer M, Finger N, Kovacs G, Schoberl J, Zaglmayr S, Langer U, Lerch R (2006) Finite-element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans Ultrason Ferroelectr Freq Control 53(6):1192CrossRefGoogle Scholar
  15. Hulst H C, van de Hulst HC (1957) Light scattering by small particles (Courier Corporation)Google Scholar
  16. Kaitila J, Ylilammi M, Ella J, Aigner R (2003) Spurious resonance free bulk acoustic wave resonators. In: Proceedings of the 2003 IEEE international ultrasonics symposium, vol 1 (IEEE), pp 84–87.
  17. Lam C (2016) A review of the timing and filtering technologies in smartphones. In: 2016 IEEE international frequency control symposium (IEEE), pp 48–53.
  18. Li X, Bao J, Huang Y, Zhang B, Tang G, Omori T, Hashimoto Ky (2018) Use of double-raised-border structure for quality factor enhancement of type II piston mode FBAR. Microsyst Technol 24(7):2991. CrossRefGoogle Scholar
  19. Li X, Bao J, Huang Y, Zhang B, Omori T, Hashimoto KY (2017) Traveling wave excitation for FEM simulation of RF SAW/BAW Devices. In: Proceedings of the 2017 IEEE international ultrasonics symposium (IEEE).
  20. Luebbers R, Steich D, Kunz K (1993) FDTD calculation of scattering from frequency-dependent materials. IEEE Trans Antennas Propag 41(9):1249. CrossRefGoogle Scholar
  21. Marcuvitz N (1951) Waveguide handbook, vol 21. McGraw-Hill, New YorkGoogle Scholar
  22. Nakamura H, Nakanishi H,  Tsurunari T,  Matsunami K,  Iwasaki Y,  Hashimoto K,  Yamaguchi M (2008) Suppression of transverse mode spurious in SAW resonators on an SiO\(_2\)/Al/LiNbO\(_3\) Structure for wideband CDMA applications. In: Proceedings of the 2008 IEEE international ultrasonics symposium (IEEE, 2008), pp 594–597.
  23. Newton RG (2013) Scattering theory of waves and particles. Springer, BerlinGoogle Scholar
  24. Pozar DM (2009) Microwave engineering. Wiley, HobokenGoogle Scholar
  25. Rylander T, Bondeson A (2002) Application of stable FEM-FDTD hybrid to scattering problems. IEEE Trans Antennas Propag 50(2):141. CrossRefzbMATHGoogle Scholar
  26. Schmidt RV, Coldren L (1975) Thin film acoustic surface waveguides on anisotropic media. IEEE Trans Sonics Ultrason 22(2):115. CrossRefGoogle Scholar
  27. Solal M, Laude V, Ballandras S (2004) A p-matrix based model for SAW grating waveguides taking into account modes conversion at the reflection. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1690. CrossRefGoogle Scholar
  28. Song WJ, Rose JL, Galán JM, Abascal R (2005) Ultrasonic guided wave scattering in a plate overlap. IEEE Trans Ultrason Ferroelectr Frequency Control 52(5):892. CrossRefGoogle Scholar
  29. Staples E,  Smythe R (1975) Surface acoustic wave resonators on ST-quartz. In: Proceedings of the 1975 ultrasonics symposium (IEEE), pp 307–310.
  30. Tang G, Han T, Chen J, Zhang B, Omori T, Hashimoto KY (2016) Model parameter extraction for obliquely propagating surface acoustic waves in infinitely long grating structures. Jpn J Appl Phys 55(7):07KD08CrossRefGoogle Scholar
  31. Tanski W, Wittels N (1979) SEM observations of SAW resonator transverse modes. Appl Phys Lett 34(9):537. CrossRefGoogle Scholar
  32. Thalhammer R, Kaitila J, Zieglmeier S, Elbrecht L (2006) Spurious mode suppression in BAW resonators. In: Proceedings of the 2006 IEEE international ultrasonics symposium (IEEE), pp 456–459.
  33. Thalmayr F, Hashimoto Ky, Omori T, Yamaguchi M (2010) Frequency domain analysis of lamb wave scattering and application to film bulk acoustic wave resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57(7):1641. CrossRefGoogle Scholar
  34. Thalmayr F, Hashimoto Ky, Omori T, Yamaguchi M (2010) Power deduction from surface fields in multilayer waveguides. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):405. CrossRefGoogle Scholar
  35. Thalmayr FPC (2010) Wave scattering analysis as approach for improved BAW resonator design Wave scattering analysis as approach for improved BAW resonator design. Ph.D. thesis, Chiba University . Appendix BGoogle Scholar
  36. Tsay WJ, Pozar DM (1993) Application of the FDTD technique to periodic problems in scattering and radiation. IEEE Microwave Guided Wave Lett 3(8):250. CrossRefGoogle Scholar
  37. Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM, Hashimoto Ky, Ruppel CC (2002) Microwave acoustic materials, devices, and applications. IEEE Trans Microwave Theory Tech 50(3):738. CrossRefGoogle Scholar
  38. Zhang Q, Han T, Zhang B, Tang G, Huang Y, Omori T, Hashimoto KY (2016) Frequency domain FEM analysis of reflector scattering characteristics for SAW tags. In: Proceedings of the 2016 IEEE International Ultrasonics Symposium (IEEE).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Graduate School of EngineeringChiba UniversityChibaJapan
  3. 3.Department of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations