Dual-wavelength transmission system using double micro-resonator system for EMI healthcare applications

  • I. S. AmiriEmail author
  • M. Bunruangses
  • K. Chaiwong
  • R. Udaiyakumar
  • R. Maheswar
  • M. N. Hindia
  • K. B. Dimyati
  • P. YupapinEmail author
Technical Paper


To meet the 5G requirements for higher bandwidth, the focus has been shifted to millimeter waves paving the way to radio over fiber (RoF) in order to minimize radio losses. Dual wavelength transmission within RoF for electromagnetic immunity interference (EMI) can be utilized within local area network and long-haul transmission. Health care services will also be able to utilize the technology to transmit health-related data from thousands of patients to the specific destination by connecting to the long-haul fiber optic cable connection. To make dual-wavelength transmission stable and reliable, the formation of the two-wavelength light source is proposed in this paper by means of the double coupled micro-ring resonators. The proposed RoF system will be able to transmit EMI signals of patients over 300 km of optical fiber link and 3 m wireless link without the need for any intermediate signal amplifying device. All the patient’s data will be available to any doctor in any hospital securely by integrating with currently available wireless and the internet of things systems.



  1. Ahmad H, Soltanian M, Amiri I, Alavi S, Othman A, Supa’at A (2015) Carriers generated by mode-locked laser to increase serviceable channels in radio over free space optical systems. IEEE Photonics J 7:1–12Google Scholar
  2. Akinlabi AO, Joseph M (2017) ICT4D: femtocells network versus wi-fi network for mobile communication. Paper presented at: wireless communications, signal processing and networking (WiSPNET), 2017 international conference on 2017Google Scholar
  3. Alavi S, Amiri I, Idrus S, Supa’at A, Ali J, Yupapin P (2014a) All-optical OFDM generation for IEEE802. 11a based on soliton carriers using microring resonators. IEEE Photonics J 6:1–9Google Scholar
  4. Alavi S, Amiri I, Khalily M, Fisal N, Supa’at A, Ahmad H et al (2014b) W-band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion. IEEE Photonics J 6:1–7Google Scholar
  5. Alavi S, Amiri I, Idrus S, Supa’at A (2015) Generation and wired/wireless transmission of IEEE802. 16 m signal using solitons generated by microring resonator. Opt Quantum Electron 47:975–984CrossRefGoogle Scholar
  6. Alavi S, Amiri I, Soltanian M, Penny R, Supa’at A, Ahmad H (2016) Multiwavelength generation using an add-drop microring resonator integrated with an InGaAsP/InP sampled grating distributed feedback. Chin Opt Lett 14:021301CrossRefGoogle Scholar
  7. Amiri I, Ali J, Yupapin P (2012) Enhancement of FSR and finesse using add/drop filter and PANDA ring resonator systems. Int J Mod Phys B 26:1250034CrossRefGoogle Scholar
  8. Amiri I, Soltanmohammadi S, Shahidinejad A, Ali J (2013) Optical quantum transmitter with finesse of 30 at 800-nm central wavelength using microring resonators. Opt Quantum Electron 45:1095–1105CrossRefGoogle Scholar
  9. Amiri I, Alavi S, Fisal N, Supa’at A, Ahmad H (2014a) All-optical generation of two IEEE802. 11n signals for 2 × 2 MIMO-RoF via MRR system. IEEE Photonics J 6:1–11CrossRefGoogle Scholar
  10. Amiri I, Ebrahimi M, Yazdavar AH, Ghorbani S, Alavi S, Idrus SM et al (2014b) Transmission of data with orthogonal frequency division multiplexing technique for communication networks using GHz frequency band soliton carrier. IET Commun 8:1364–1373CrossRefGoogle Scholar
  11. Amiri I, Nikoukar A, Ali J (2014c) GHz frequency band soliton generation using integrated ring resonator for WiMAX optical communication. Opt Quantum Electron 46:1165–1177CrossRefGoogle Scholar
  12. Amiri I, Alavi S, Ali J (2015a) High-capacity soliton transmission for indoor and outdoor communications using integrated ring resonators. Int J Commun Syst 28:147–160CrossRefGoogle Scholar
  13. Amiri I, Alavi S, Soltanian M, Fisal N, Supa’at A, Ahmad H (2015b) Increment of access points in integrated system of wavelength division multiplexed passive optical network radio over fiber. Sci Rep 5:11897CrossRefGoogle Scholar
  14. Amiri I, Soltanian M, Alavi S, Ahmad H (2015c) Multi wavelength mode-lock soliton generation using fiber laser loop coupled to an add-drop ring resonator. Opt Quant Electron 47:2455–2464CrossRefGoogle Scholar
  15. Amiri I, Alavi S, Soltanian M, Penny R, Supa’at A, Fisal N et al (2016) 2 × 2 MIMO-OFDM-RoF generation and transmission of double V-band signals using a microring resonator system. Opt Quantum Electron 48:5CrossRefGoogle Scholar
  16. Amiri IS, Ariannejad M, Tiu Z, Ooi S, Aidit S, Alizadeh F et al (2018) A widely tunable dual-wavelength based on a microring resonator filter device. Laser Phys 28:065101CrossRefGoogle Scholar
  17. Burg A, Chattopadhyay A, Lam K-Y (2018) Wireless communication and security issues for cyber-physical systems and the internet-of-things. Proc IEEE 106:38–60CrossRefGoogle Scholar
  18. Chen C-H, Seyedi MA, Fiorentino M, Livshits D, Gubenko A, Mikhrin S et al (2015) A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. Opt Express 23:21541–21548CrossRefGoogle Scholar
  19. Chen Z, Lee J, Quek TQ, Kountouris M (2017) Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Trans Wirel Commun 16:3401–3415CrossRefGoogle Scholar
  20. Faheem M, Gungor V (2017) MQRP: mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Gener Comput Syst 82:358–374CrossRefGoogle Scholar
  21. Funai C, Tapparello C, Heinzelman W (2017) Enabling multi-hop ad hoc networks through WiFi Direct multi-group networking. Paper presented at: computing, networking and communications (ICNC), 2017 international conference on 2017Google Scholar
  22. Gawłowicz P, Zehl S, Zubow A, Wolisz A (2017) NxWLAN: towards transparent and secure usage of neighbors’ access points in residential WLANs. Paper presented at: wireless and mobile computing, networking and communications (WiMob) 2017Google Scholar
  23. Heidarpour B, Dziong Z, Lau WC, Vakilinia S (2018) Pricing the volume-based data services in cellular wireless markets. IEEE Trans Netw Serv Manag 15:260–274CrossRefGoogle Scholar
  24. Hsu Y, Chuang C, Chen G-H, Chang Y-C, Wu X, Wei L et al (2017) Transmission performance improvement of PAM-4 signal direct-detected by Ge–Si photodiode using Volterra equalization. Paper presented at: Asia communications and photonics conference 2017Google Scholar
  25. Keyani S, Mumtaz A, Mushtaq H, Hussain A (2009) Affordable and accessible tele-healthcare to rural areas of Pakistan through web and mobile based technologies. Paper presented at: high-capacity optical networks and enabling technologies (HONET), 2009 6th international symposium on 2009Google Scholar
  26. Khurana M, Ramakrishna C, Panda S (2017) Capacity enhancement using MU-MIMO in vehicular ad hoc network. Int J Appl Eng Res 12:5872–5883Google Scholar
  27. Kim H, Cho JH, Kim S, Song K-U, Lee H, Lee J et al (2007) Radio-over-fiber system for TDD-based OFDMA wireless communication systems. J Lightwave Technol 25:3419–3427CrossRefGoogle Scholar
  28. Krehlik P, Mazur M, Śliwczyński L (2017) Delay compensation of 1 PPS timetags in fiber-optic time distribution. Paper presented at: frequency and time forum and IEEE international frequency control symposium (EFTF/IFC), 2017 joint conference of the European 2017Google Scholar
  29. Li Z, Erkilinç MS, Shi K, Sillekens E, Galdino L, Thomsen BC et al (2017) Performance improvement of electronic dispersion post-compensation in direct detection systems using DSP-based receiver linearization. Paper presented at: optical fiber communications conference and exhibition (OFC), 2017Google Scholar
  30. Liu Y, Li X, Yu FR, Ji H, Zhang H, Leung VC (2017) Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE J Sel Areas Commun 35:2295–2311CrossRefGoogle Scholar
  31. Lu M, Wang X, Loh PC, Blaabjerg F, Dragicevic T (2018) Graphical evaluation of time-delay compensation techniques for digitally controlled converters. IEEE Trans Power Electron 33:2601–2614CrossRefGoogle Scholar
  32. Mardoyan H, Mestre MA, Estarán JM, Jorge F, Blache F, Angelini P et al (2017) 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J Lightwave Technol 35:1253–1259CrossRefGoogle Scholar
  33. Matsumura T, Ibuka K, Ishizu K, Murakami H, Kojima F, Harada H (2017) Prototype of IEEE 802.11 af-based baseband IC enabling compact device for wireless local area network systems in TV white-spaces. IEEE Trans Cogn Commun Netw 3:450–463CrossRefGoogle Scholar
  34. Nain A, Kumar S (2017) Performance investigation of different modulation schemes in RoF systems under the influence of self phase modulation. J Opt Commun. Google Scholar
  35. Nanzer JA, Callahan PT, Dennis ML, Clark TR, Novak D, Waterhouse RB (2011) Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion. IEEE Trans Microw Theory Tech 59:3522–3530CrossRefGoogle Scholar
  36. Pandi VS, Manickam JML (2017) A novel of multi-hop transmission in integrated network of WLAN IEEE 802.11 n and IEEE 802.11 g using riverbed modeler 17.5. Clust Comput. Google Scholar
  37. Rost P, Bernardos CJ, De Domenico A, Di Girolamo M, Lalam M, Maeder A et al (2014) Cloud technologies for flexible 5G radio access networks. IEEE Commun Mag 52:68–76CrossRefGoogle Scholar
  38. Soltanian M, Amiri I, Alavi S, Ahmad H (2015) All optical ultra-wideband signal generation and transmission using mode-locked laser incorporated with add-drop microring resonator. Laser Phys Lett 12:065105CrossRefGoogle Scholar
  39. Stojkoska BLR, Trivodaliev KV (2017) A review of Internet of Things for smart home: challenges and solutions. J Clean Prod 140:1454–1464CrossRefGoogle Scholar
  40. Tian B, Zhang Q, Ma J, Tao Y, Shen Y, Wang Y et al (2018) Proposal and performance analysis on the PDM microwave photonic link for the mm-wave signal with hybrid QAM-MPPM-RZ modulation. Opt Commun 419:59–66CrossRefGoogle Scholar
  41. Wang J-Y, Wang J-B, Zhu B, Lin M, Wu Y, Wang Y et al (2017) Improvement of BER performance by tilting receiver plane for indoor visible light communications with input-dependent noise. Paper presented at: communications (ICC), 2017 IEEE international conference on 2017Google Scholar
  42. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS (2004) Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12:2404–2422CrossRefGoogle Scholar
  43. Xu K, Wang R, Dai Y, Yin F, Li J, Ji Y et al (2014) Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Res 2:B54–B63CrossRefGoogle Scholar
  44. Xu T, Karanov B, Shevchenko NA, Lavery D, Liga G, Killey RI et al (2017) Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect. Sci Rep 7:12986CrossRefGoogle Scholar
  45. Xue X, Xuan Y, Bao C, Li S, Zheng X, Zhou B et al (2018) Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol 36:2312–2321CrossRefGoogle Scholar
  46. Zhang S, Yan L, Chen B, Xu Z, Xie J (2017) Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement. Opt Express 25:472–485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • I. S. Amiri
    • 1
    • 2
    Email author
  • M. Bunruangses
    • 3
  • K. Chaiwong
    • 4
  • R. Udaiyakumar
    • 5
  • R. Maheswar
    • 5
  • M. N. Hindia
    • 6
  • K. B. Dimyati
    • 6
  • P. Yupapin
    • 1
    • 7
    Email author
  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Industrial EducationRajamangala University of Technology PhranakornBangkokThailand
  4. 4.Faculty of Industrial TechnologyLeoi Rajabhat UniversityLeoiThailand
  5. 5.Department of Electronics and CommunicationSri Krishna College of TechnologyCoimbatoreIndia
  6. 6.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  7. 7.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations