Advertisement

Microsystem Technologies

, Volume 25, Issue 2, pp 509–519 | Cite as

Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application

  • Ranjitsinha R. GiddeEmail author
  • Prashant M. Pawar
  • Babruvahan P. Ronge
  • Vishal P. Dhamgaye
Technical Paper
  • 54 Downloads

Abstract

A valveless micropump based on an electromagnetic actuation for drug delivery application has been designed. The parametric studies are performed to examine the effects of the divergence angle, neck width, diffuser length, height and diameter of the pump chamber and diaphragm thickness on the flow rate. Furthermore, an optimal design of the micropump is identified, and the proposed micropump has been fabricated. Experiments are performed to validate simulation results in terms of flow rate versus frequency and flow rate versus back pressure. The proposed micropump is polymer based and thus suitable for low-cost and disposable applications.

Notes

References

  1. Cui Q, Liu C, Zha XF (2008) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Adv Manuf Technol 36(5–6):516–524CrossRefGoogle Scholar
  2. Fadl A (2010) Valve-less rectification micropumps based on bifurcation structuresGoogle Scholar
  3. Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14(2):400CrossRefGoogle Scholar
  4. Gidde RR, Pawar PM (2017) On effect of viscoelastic characteristics of polymers on performance of micropump. Adv Mech Eng 9(2):1687814017691211CrossRefGoogle Scholar
  5. Gusenbauer M, Mazza G, Posnicek T, Brandl M, Schrefl T (2017) Magnetically actuated circular displacement micropump. Int J Adv Manul Technol 95:3575–3588CrossRefGoogle Scholar
  6. Jeong J, Kim CN (2007) A numerical simulation on diffuser-nozzle based piezoelectric micropumps with two different numerical models. Int J Numer Meth Fluids 53(4):561–571CrossRefzbMATHGoogle Scholar
  7. Ke MT, Zhong JH, Lee CY (2012) Electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. Sensors 12(10):13075–13087CrossRefGoogle Scholar
  8. Kumar N, George D, Sajeesh P, Manivavannan PV, Sen AK (2016) Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements. J Micromech Microeng 26(7):5013CrossRefGoogle Scholar
  9. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35CrossRefGoogle Scholar
  10. Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech houseGoogle Scholar
  11. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130(2):917–942CrossRefGoogle Scholar
  12. Pawar PM, Gidde RR, Ronge BP (2016) Shape optimization of microfluidic pump using fluid-structure interaction approach. In: Techno-Societal 2016, international conference on advanced technologies for societal applications. Springer, Cham, pp 471–477Google Scholar
  13. Sen AK, Darabi J, Knapp DR (2007) Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications. Microfluid Nanofluid 3(3):283–298CrossRefGoogle Scholar
  14. Shen M, Yamahata C, Gijs MA (2008) Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator. Microelectron Eng 85(5–6):1104–1107CrossRefGoogle Scholar
  15. Singh S, Kumar N, George D, Sen AK (2015) Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens Actuators A 225:81–94CrossRefGoogle Scholar
  16. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A 39(2):159–167CrossRefGoogle Scholar
  17. Yamahata C, Lacharme F, Gijs MA (2005) Glass valveless micropump using electromagnetic actuation. Microelectron Eng 78:132–137CrossRefGoogle Scholar
  18. Yang KS, Chao TF, Chen IY, Wang CC, Shyu JC (2012) A comparative study of nozzle/diffuser micropumps with novel valves. Molecules 17(2):2178–2187CrossRefGoogle Scholar
  19. Yao Q, Xu D, Pan LS, Melissa Teo AL, Ho WM, Peter Lee VS, Shabbir M (2007) CFD simulations of flows in valveless micropumps. Eng Appl Comput Fluid Mech 1(3):181–188Google Scholar
  20. Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manuf Technol 30(3–4):215–220CrossRefGoogle Scholar
  21. Zhou Y, Amirouche F (2009) Study of fluid damping effects on resonant frequency of an electromagnetically actuated valveless micropump. Int J Adv Manuf Technol 45(11–12):1187CrossRefGoogle Scholar
  22. Zhou Y, Amirouche F (2011) An electromagnetically-actuated all-PDMS valveless micropump for drug delivery. Micromachines 2(3):345–355CrossRefGoogle Scholar
  23. Zhu M, Kirby P, Wacklerle M, Herz M, Richter M (2009) Optimization design of multi-material micropump using finite element method. Sens Actuators A 149(1):130–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ranjitsinha R. Gidde
    • 1
    Email author
  • Prashant M. Pawar
    • 1
  • Babruvahan P. Ronge
    • 1
  • Vishal P. Dhamgaye
    • 2
  1. 1.SVERI’s College of EngineeringPandharpurIndia
  2. 2.Raja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations