Microsystem Technologies

, Volume 25, Issue 2, pp 389–397 | Cite as

Analysis of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor and modeling its fabrication imperfections

  • Sanaz ZareiEmail author
  • Mahmoud Shahabadi
  • Shamsoddin Mohajerzadeh
Technical Paper


Design and fabrication of an in-plane silicon Fabry–Perot temperature sensor for fiber-optic temperature sensing was reported in our previous work. To fabricate this sensor, deep reactive ion etching process was utilized which is challenging due to the large depth of etching needed for the device. Required optically smooth surfaces and highly vertical sidewalls as well as minimum amount of under-etch are difficult to be achieved in deep-etched structures. Here, the fabrication errors are briefly introduced and thereafter a numerical analysis based on the transfer-matrix formulation for propagation of Gaussian beams across the proposed silicon Fabry–Perot resonator is developed. Finally, the fabricated sensor is modeled and the device performance degradation due to fabrication imperfections is estimated.



The authors would like to thank Mr. Amideddin Mataji-Kojouri from the Photonics Research Lab., School of ECE, University of Tehran, for supplying the TLM Matlab code.


  1. Addae-Mensah K, Retterer S, Opalenik S et al (2010) Cryogenic etching of silicon: an alternative method for fabrication of vertical microcantilever master molds. J Microelectromech Syst 19:64–74CrossRefGoogle Scholar
  2. Azimi S, Mehran M, Amini A et al (2010) Formation of three-dimensional and nanowall structures on silicon using a hydrogen-assisted high aspect ratio etching. J Vac Sci Technol B 28(6):1125–1131CrossRefGoogle Scholar
  3. Beheim G, Sotomayor J, Tuma M (1993) Laser-annealed thin-film fiber-optic temperature sensor. Proc SPIE 2045:217–221CrossRefGoogle Scholar
  4. Berthold JW, Reed SE, Sarkis RG (1991) Reflective fiber optic temperature sensor using silicon thin film. Opt Eng 30(5):524–528CrossRefGoogle Scholar
  5. Breglio G, Coppola G, Cutolo A et al (2001) Temperature optical sensor based on a silicon bi-modal Y branch. Proc SPIE 4293:155–161CrossRefGoogle Scholar
  6. Chang C, Solgaard O (2013) Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt Express 21(22):27209–27218CrossRefGoogle Scholar
  7. Cocorullo G, Della Corte F, Iodice M et al (1997) A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Trans Electron Devices 44(5):766–774CrossRefGoogle Scholar
  8. Deng Q, Li X, Chen R et al (2014) Low-cost silicon photonic temperature sensor using broadband light source. In: IEEE 11th international conference on group IV photonics (GFP).
  9. Gharooni M, Mohajerzadeh A, Sandoughsaz A et al (2013) A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon. J Micromech Microeng 23(9):095014CrossRefGoogle Scholar
  10. Guan X, Wang X, Frandsen L (2016) Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt Express 24(15):16349–16356CrossRefGoogle Scholar
  11. Irace A, Breglio G (2003) All-silicon optical temperature sensor based on multi-mode interference. Opt Express 11(22):2807–2812CrossRefGoogle Scholar
  12. Jung I, Park B, Provine J et al (2009) Photonic crystal fiber tip sensor for precision temperature sensing. In: IEEE LEOS annual meeting conference.
  13. Jung I, Park B, Provine J et al (2011) Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J Lightwave Technol 29(9):1367–1374CrossRefGoogle Scholar
  14. Kim H, Yu M (2016) Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt Express 24(9):9501–9510CrossRefGoogle Scholar
  15. Kim G, Lee H, Park C et al (2010) Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt Express 18(21):22215–22221CrossRefGoogle Scholar
  16. Klimov N, Berger M, Ahmed Z (2015a) Towards reproducible ring resonator based temperature sensors. Sens Transducers J 191(8):63–66Google Scholar
  17. Klimov N, Mittal S, Berger M et al (2015b) On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt Lett 40(17):3934–3936CrossRefGoogle Scholar
  18. Klimov N, Purdy T, Ahmed Z (2015) Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity. Adv Photonics. Google Scholar
  19. Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent 26(3):5501893Google Scholar
  20. Lee H, Kim G, Kim W et al (2011) Tunable-Resonator-Based Temperature Sensor Interrogated through Optical Power Detection. Appl Phys Express 4(10):102201CrossRefGoogle Scholar
  21. Lipson A, Yeatman EM (2007a) A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst 16(3):521–527CrossRefGoogle Scholar
  22. Lipson A, Yeatman EM (2007b) Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt Lett 31(3):395–397CrossRefGoogle Scholar
  23. Liu G, Han M, Hou W (2015) High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry–Perot cavity. Opt Express 23(6):7237–7247CrossRefGoogle Scholar
  24. Park B, Jung I, Provine J et al (2010) Monolithic silicon photonic crystal fiber tip sensor for refractive index and temperature sensing. In: IEEE conference on lasers and electro-optics and quantum electronics and laser science.
  25. Park B, Provine J, Jung I et al (2011) Photonic crystal fiber tip sensor for high-temperature measurement. IEEE Sens J 11(11):2643–2648CrossRefGoogle Scholar
  26. Park B, Jung IW, Provine J et al (2014) Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26(9):900–903CrossRefGoogle Scholar
  27. Qiu C, Hu T, Yu P et al (2012) A temperature sensor based on silicon eye-like microring with sharp asymmetric fano resonance. In: IEEE 9th international conference on group IV photonics (GFP).
  28. Sammak A, Azimi S, Izadi N et al (2007) Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching. J Microelectromech Syst 16(4):912–918CrossRefGoogle Scholar
  29. Schultheis L, Amstutz H, Kaufmann M (1988) Fiber-optic temperature sensing with ultrathin silicon etalons. Opt Lett 13(9):782–784CrossRefGoogle Scholar
  30. St-Gelais R, Poulin A, Peter Y (2012) Advances in modeling, design, and fabrication of deep-etched multilayer resonators. J Lightwave Technol 30(12):1900–1908CrossRefGoogle Scholar
  31. Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616CrossRefGoogle Scholar
  32. Tao J, Cai H, Gu Y et al (2015) Demonstration of a photonic-based linear temperature sensor. IEEE Photon Technol Lett 27(7):767–769CrossRefGoogle Scholar
  33. Xu H, Hafezi M, Fan J et al (2014) Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express 22(3):3098–3104CrossRefGoogle Scholar
  34. Zarei S, Mohajerzadeh S (2017) Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett 13:421–426CrossRefGoogle Scholar
  35. Zarei S, Mohajerzadeh S, Shahabadi M (2017) Design and fabrication of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor. In: IEEE international conference on telecommunications and photonics (ICTP).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sanaz Zarei
    • 1
    • 2
    Email author
  • Mahmoud Shahabadi
    • 2
  • Shamsoddin Mohajerzadeh
    • 1
  1. 1.Thin Film Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Photonics Research Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations